Endre søk
Begrens søket
12 1 - 50 of 59
RefereraExporteraLink til resultatlisten
Permanent link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Treff pr side
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sortering
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
  • Standard (Relevans)
  • Forfatter A-Ø
  • Forfatter Ø-A
  • Tittel A-Ø
  • Tittel Ø-A
  • Type publikasjon A-Ø
  • Type publikasjon Ø-A
  • Eldste først
  • Nyeste først
  • Skapad (Eldste først)
  • Skapad (Nyeste først)
  • Senast uppdaterad (Eldste først)
  • Senast uppdaterad (Nyeste først)
  • Disputationsdatum (tidligste først)
  • Disputationsdatum (siste først)
Merk
Maxantalet träffar du kan exportera från sökgränssnittet är 250. Vid större uttag använd dig av utsökningar.
  • 1. Abramsson, Mia L.
    et al.
    Sahin, Cagla
    Hopper, Jonathan T. S.
    Branca, Rui M. M.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Xu, Mingming
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Chandler, Shane A.
    Österlund, Nicklas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Ilag, Leopold L.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
    Leppert, Axel
    Costeira-Paulo, Joana
    Lang, Lisa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Teilum, Kaare
    Laganowsky, Arthur
    Benesch, Justin L. P.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Robinson, Carol V.
    Marklund, Erik G.
    Allison, Timothy M.
    Winther, Jakob R.
    Landreh, Michael
    Charge Engineering Reveals the Roles of Ionizable Side Chains in Electrospray Ionization Mass Spectrometry2021Inngår i: JACS Au, E-ISSN 2691-3704, Vol. 1, nr 12, s. 2385-2393Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In solution, the charge of a protein is intricately linked to its stability, but electrospray ionization distorts this connection, potentially limiting the ability of native mass spectrometry to inform about protein structure and dynamics. How the behavior of intact proteins in the gas phase depends on the presence and distribution of ionizable surface residues has been difficult to answer because multiple chargeable sites are present in virtually all proteins. Turning to protein engineering, we show that ionizable side chains are completely dispensable for charging under native conditions, but if present, they are preferential protonation sites. The absence of ionizable side chains results in identical charge state distributions under native-like and denaturing conditions, while coexisting conformers can be distinguished using ion mobility separation. An excess of ionizable side chains, on the other hand, effectively modulates protein ion stability. In fact, moving a single ionizable group can dramatically alter the gas-phase conformation of a protein ion. We conclude that although the sum of the charges is governed solely by Coulombic terms, their locations affect the stability of the protein in the gas phase.

  • 2. Banci, Lucia
    et al.
    Blazevits, Olga
    Cantini, Francesca
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Lang, Lisa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Luchinat, Claudio
    Mao, Jiafei
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Ravera, Enrico
    Solid-state NMR studies of metal-free SOD1 fibrillar structures2014Inngår i: Journal of Biological Inorganic Chemistry, ISSN 0949-8257, E-ISSN 1432-1327, Vol. 19, nr 4-5, s. 659-666Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Copper-zinc superoxide dismutase 1 (SOD1) is present in the protein aggregates deposited in motor neurons of amyotrophic lateral sclerosis (ALS) patients. ALS is a neurodegenerative disease that can be either sporadic (ca. 90 %) or familial (fALS). The most widely studied forms of fALS are caused by mutations in the sequence of SOD1. Ex mortuo SOD1 aggregates are usually found to be amorphous. In vitro SOD1, in its immature reduced and apo state, forms fibrillar aggregates. Previous literature data have suggested that a monomeric SOD1 construct, lacking loops IV and VII, (apoSOD Delta IV-VII), shares the same fibrillization properties of apoSOD1, both proteins having the common structural feature of the central beta-barrel. In this work, we show that structural information can be obtained at a site-specific level from solid-state NMR. The residues that are sequentially assignable are found to be located at the putative nucleation site for fibrillar species formation in apoSOD, as detected by other experimental techniques.

  • 3. Bergh, Johan
    et al.
    Zetterstrom, Per
    Andersen, Peter M.
    Brannstrom, Thomas
    Graffmo, Karin S.
    Jonsson, P. Andreas
    Lang, Lisa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Marklund, Stefan L.
    Structural and kinetic analysis of protein-aggregate strains in vivo using binary epitope mapping2015Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 112, nr 14, s. 4489-4494Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Despite considerable progress in uncovering the molecular details of protein aggregation in vitro, the cause and mechanism of protein-aggregation disease remain poorly understood. One reason is that the amount of pathological aggregates in neural tissue is exceedingly low, precluding examination by conventional approaches. We present here a method for determination of the structure and quantity of aggregates in small tissue samples, circumventing the above problem. The method is based on binary epitope mapping using anti-peptide antibodies. We assessed the usefulness and versatility of the method in mice modeling the neurodegenerative disease amyotrophic lateral sclerosis, which accumulate intracellular aggregates of superoxide dismutase-1. Two strains of aggregates were identified with different structural architectures, molecular properties, and growth kinetics. Both were different from superoxide dismutase-1 aggregates generated in vitro under a variety of conditions. The strains, which seem kinetically under fragmentation control, are associated with different disease progressions, complying with and adding detail to the growing evidence that seeding, infectivity, and strain dependence are unifying principles of neurodegenerative disease.

  • 4. Byström, Roberth
    et al.
    Andersen, Peter M.
    Grobner, Gerhard
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    SOD1 Mutations Targeting Surface Hydrogen Bonds Promote Amyotrophic Lateral Sclerosis without Reducing Apo-state Stability2010Inngår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 285, nr 25, s. 19544-19552Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In good accord with the protein aggregation hypothesis for neurodegenerative diseases, ALS-associated SOD1 mutations are found to reduce structural stability or net repulsive charge. Moreover there are weak indications that the ALS disease progression rate is correlated with the degree of mutational impact on the apoSOD1 structure. A bottleneck for obtaining more conclusive information about these structure-disease relationships, however, is the large intrinsic variability in patient survival times and insufficient disease statistics for the majority of ALS- provoking mutations. As an alternative test of the structure- disease relationship we focus here on the SOD1 mutations that appear to be outliers in the data set. The results identify several ALS- provoking mutations whose only effect on apoSOD1 is the elimination or introduction of a single charge, i.e. D76V/Y, D101N, and N139D/K. The thermodynamic stability and folding behavior of these mutants are indistinguishable from the wild-type control. Moreover, D101N is an outlier in the plot of stability loss versus patient survival time by having rapid disease progression. Commonto the identified mutations is that they truncate conserved salt-links and/or H-bond networks in the functional loops IV or VII. The results show that the local impact of ALS- associated mutations on the SOD1 molecule can sometimes overrun their global effects on apo-state stability and net repulsive charge, and point at the analysis of property outliers as an efficient strategy for mapping out new ALS- provoking features.

  • 5. Claes, Filip
    et al.
    Rudyak, Stanislav
    Laird, Angela S.
    Louros, Nikolaos
    Beerten, Jacinte
    Debulpaep, Maja
    Michiels, Emiel
    van Der Kant, Rob
    Van Durme, Joost
    De Baets, Greet
    Houben, Bert
    Ramakers, Meine
    Yuan, Kristy
    Gwee, Serene S. L.
    Hernandez, Sara
    Broersen, Kerensa
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Moahamed, Barbara
    Kirstein, Janine
    Robberecht, Wim
    Rousseau, Frederic
    Schymkowitz, Joost
    Exposure of a cryptic Hsp70 binding site determines the cytotoxicity of the ALS-associated SOD1-mutant A4V2019Inngår i: Protein Engineering Design & Selection, ISSN 1741-0126, E-ISSN 1741-0134, Vol. 32, nr 10, s. 443-457Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The accumulation of toxic protein aggregates is thought to play a key role in a range of degenerative pathologies, but it remains unclear why aggregation of polypeptides into non-native assemblies is toxic and why cellular clearance pathways offer ineffective protection. We here study the A4V mutant of SOD1, which forms toxic aggregates in motor neurons of patients with familial amyotrophic lateral sclerosis (ALS). A comparison of the location of aggregation prone regions (APRs) and Hsp70 binding sites in the denatured state of SOD1 reveals that ALS-associated mutations promote exposure of the APRs more than the strongest Hsc/Hsp70 binding site that we could detect. Mutations designed to increase the exposure of this Hsp70 interaction site in the denatured state promote aggregation but also display an increased interaction with Hsp70 chaperones. Depending on the cell type, in vitro this resulted in cellular inclusion body formation or increased clearance, accompanied with a suppression of cytotoxicity. The latter was also observed in a zebrafish model in vivo. Our results suggest that the uncontrolled accumulation of toxic SOD1(A4V) aggregates results from insufficient detection by the cellular surveillance network.

  • 6.
    Danielsson, Jens
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Awad, Wael
    Saraboji, Kadhirvel
    Kurnik, Martin
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Lang, Lisa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Leinartaité, Lina
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Marklund, Stefan L.
    Logan, Derek T.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Global structural motions from the strain of a single hydrogen bond2013Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 110, nr 10, s. 3829-3834Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The origin and biological role of dynamic motions of folded enzymes is not yet fully understood. In this study, we examine the molecular determinants for the dynamic motions within the beta-barrel of superoxide dismutase 1 (SOD1), which previously were implicated in allosteric regulation of protein maturation and also pathological misfolding in the neurodegenerative disease amyotrophic lateral sclerosis. Relaxation-dispersion NMR, hydrogen/deuterium exchange, and crystallographic data show that the dynamic motions are induced by the buried H43 side chain, which connects the backbones of the Cu ligand H120 and T39 by a hydrogen-bond linkage through the hydrophobic core. The functional role of this highly conserved H120-H43-T39 linkage is to strain H120 into the correct geometry for Cu binding. Upon elimination of the strain by mutation H43F, the apo protein relaxes through hydrogen-bond swapping into a more stable structure and the dynamic motions freeze out completely. At the same time, the holo protein becomes energetically penalized because the twisting back of H120 into Cu-bound geometry leads to burial of an unmatched backbone carbonyl group. The question then is whether this coupling between metal binding and global structural motions in the SOD1 molecule is an adverse side effect of evolving viable Cu coordination or plays a key role in allosteric regulation of biological function, or both?

  • 7.
    Danielsson, Jens
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Inomata, Kohsuke
    Murayama, Shuhei
    Tochio, Hidehito
    Lang, Lisa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Shirakawa, Masahiro
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Pruning the ALS-Associated Protein SOD1 for in-Cell NMR2013Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 135, nr 28, s. 10266-10269Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To efficiently deliver isotope-labeled proteins into mammalian cells poses a main challenge for structural and functional analysis by in-cell NMR. In this study we have employed cell-penetrating peptides (CPPs) to deliver the ALS-associated protein superoxide dismutase (SOD1) into HeLa cells. Our results show that, although full-length SOD1 cannot be efficiently internalized, a variant in which the active-site loops IV and VII have been truncated (SOD1(Delta IV Delta VII))) yields high cytosolic delivery. The reason for the enhanced delivery of SOD1(Delta IV Delta VII) seems to be the elimination of negatively charged side chains, which alters the net charge of the CPP-SOD1 complex from neutral to +4. The internalized SOD1(Delta IV Delta VII) protein displays high-resolution in-cell NMR spectra similar to, but not identical to, those of the lysate of the cells. Spectral differences are found mainly in the dynamic beta strands 4, 5, and 7, triggered by partial protonation of the His moieties of the Cu-binding site. Accordingly, SOD1(Delta IV Delta VII) doubles here as an internal pH probe, revealing cytosolic acidification under the experimental treatment. Taken together, these observations show that CPP delivery, albeit inefficient at first trials, can be tuned by protein engineering to allow atomic-resolution NMR studies of specific protein structures that have evaded other in-cell NMR approaches: in this case, the structurally elusive apoSOD1 barrel implicated as precursor for misfolding in ALS.

  • 8.
    Danielsson, Jens
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Kurnik, Martin
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Lang, Lisa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Cutting Off Functional Loops from Homodimeric Enzyme Superoxide Dismutase 1 (SOD1) Leaves Monomeric beta-Barrels2011Inngår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 286, nr 38, s. 33070-33083Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Demetallation of the homodimeric enzyme Cu/Zn-superoxide dismutase (SOD1) is known to unleash pronounced dynamic motions in the long active-site loops that comprise almost a third of the folded structure. The resulting apo species, which shows increased propensity to aggregate, stands out as the prime disease precursor in amyotrophic lateral sclerosis (ALS). Even so, the detailed structural properties of the apoSOD1 framework have remained elusive and controversial. In this study, we examine the structural interplay between the central apoSOD1 barrel and the active-site loops by simply cutting them off; loops IV and VII were substituted with short Gly-Ala-Gly linkers. The results show that loop removal breaks the dimer interface and leads to soluble, monomeric beta-barrels with high structural integrity. NMR-detected nuclear Overhauser effects are found between all of the constituent beta-strands, confirming ordered interactions across the whole barrel. Moreover, the breathing motions of the SOD1 barrel are overall insensitive to loop removal and yield hydrogen/deuterium protection factors typical for cooperatively folded proteins (i.e. the active-site loops act as a bolt-on domain with little dynamic influence on its structural foundation). The sole exceptions are the relatively low protection factors in beta-strand 5 and the turn around Gly-93, a hot spot for ALS-provoking mutations, which decrease even further upon loop removal. Taken together, these data suggest that the cytotoxic function of apoSOD1 does not emerge from its folded ground state but from a high energy intermediate or even from the denatured ensemble.

  • 9.
    Danielsson, Jens
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Mu, Xin
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Lang, Lisa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Wang, Huabing
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Binolfi, Andres
    Theillet, Franois-Xavier
    Bekei, Beata
    Logan, Derek T.
    Selenko, Philipp
    Wennerström, Håkan
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Thermodynamics of protein destabilization in live cells2015Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 112, nr 40, s. 12402-12407Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Although protein folding and stability have been well explored under simplified conditions in vitro, it is yet unclear how these basic self-organization events are modulated by the crowded interior of live cells. To find out, we use here in-cell NMR to follow at atomic resolution the thermal unfolding of a beta-barrel protein inside mammalian and bacterial cells. Challenging the view from in vitro crowding effects, we find that the cells destabilize the protein at 37 degrees C but with a conspicuous twist: While the melting temperature goes down the cold unfolding moves into the physiological regime, coupled to an augmented heat-capacity change. The effect seems induced by transient, sequence-specific, interactions with the cellular components, acting preferentially on the unfolded ensemble. This points to a model where the in vivo influence on protein behavior is case specific, determined by the individual protein's interplay with the functionally optimized interaction landscape of the cellular interior.

  • 10.
    Danielsson, Jens
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Noel, Jeffrey Kenneth
    Simien, Jennifer Michelle
    Duggan, Brendan Michael
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Onuchic, Jose Nelson
    Jennings, Patricia Ann
    Haglund, Ellinor
    The Pierced Lasso Topology Leptin has a Bolt on Dynamic Domain Composed by the Disordered Loops I and III2020Inngår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, Vol. 432, nr 9, s. 3050-3063Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Leptin is an important signaling hormone, mostly known for its role in energy expenditure and satiety. Furthermore, leptin plays a major role in other proteinopathies, such as cancer, marked hyperphagia, impaired immune function, and inflammation. In spite of its biological relevance in human health, there are no NMR resonance assignments of the human protein available, obscuring high-resolution characterization of the soluble protein and/or its conformational dynamics, suggested as being important for receptor interaction and biological activity. Here, we report the nearly complete backbone resonance assignments of human leptin. Chemical shift-based secondary structure prediction confirms that in solution leptin forms a four-helix bundle including a pierced lasso topology. The conformational dynamics, determined on several timescales, show that leptin is monomeric, has a rigid four-helix scaffold, and a dynamic domain, including a transiently formed helix. The dynamic domain is anchored to the helical scaffold by a secondary hydrophobic core, pinning down the long loops of leptin to the protein body, inducing motional restriction without a well-defined secondary or tertiary hydrogen bond stabilized structure. This dynamic region is well suited for and may be involved in functional allosteric dynamics upon receptor binding.

  • 11.
    Danielsson, Jens
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Comparing protein behaviour in vitro and in vivo, what does the data really tell us?2017Inngår i: Current opinion in structural biology, ISSN 0959-440X, E-ISSN 1879-033X, Vol. 42, s. 129-135Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The recent advancement in moving 'biophysical' analysis of proteins in vivo has finally brought us to a position where we can start to make quantitative comparisons with existing in-vitro data. A striking observation is that protein behaviour in live cells seems, after all, not that different from in test tubes, not even at the level of complex mechanisms like protein aggregation. The example examined in this review is the ALS associated protein SOD1 that apparently retains its in-vitro properties in vivo. Does this mean that the protocols for studying proteins in vivo are somehow oversimplified, or that the macromolecular properties and interplay despite being intrinsically malleable are evolutionary more 'streamlined' than previously anticipated? Whatever the answer may be the time is now right to put these data to critical biological test.

  • 12. Gebauer, Denis
    et al.
    Jansson, Kjell
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Hedin, Niklas
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för material- och miljökemi (MMK).
    Indications that Amorphous Calcium Carbonates Occur in Pathological Mineralisation-A Urinary Stone from a Guinea Pig2018Inngår i: Minerals, E-ISSN 2075-163X, Vol. 8, nr 3, artikkel-id 84Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Calcium carbonate is an abundant biomineral that is of great importance in industrial or geological contexts. In recent years, many studies of the precipitation of CaCO3 have shown that amorphous precursors and intermediates are widespread in the biomineralization processes and can also be exploited in bio-inspired materials chemistry. In this work, the thorough investigation of a urinary stone of a guinea pig suggests that amorphous calcium carbonate (ACC) can play a role in pathological mineralization. Importantly, certain analytical techniques that are often applied in the corresponding analyses are sensitive only to crystalline CaCO3 and can misleadingly exclude the relevance of calcium carbonate during the formation of urinary stones. Our analyses suggest that ACC is the major constituent of the particular stone studied, which possibly precipitated on struvite nuclei. Minor amounts of urea, other stable inorganics, and minor organic inclusions are observed as well.

  • 13. Gianni, Stefano
    et al.
    Brunori, Maurizio
    Jemth, Per
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Zhang, Mingjie
    Distinguishing between smooth and rough free energy barriers in protein folding.2009Inngår i: Biochemistry, ISSN 1520-4995, Vol. 48, nr 49, s. 11825-30Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Analysis of curved chevron plots is a powerful tool in investigating protein folding pathways, as the curvatures can be used to gain information about both early and late folding events. When and if accumulation of low-energy intermediates can be ruled out, two different models have classically been applied to describe curved chevron plots, namely , (i) Hammond effects along smooth barrier profiles and (ii) changes in the rate-limiting step between two discrete transition states. The two models lead to very similar numerical solutions, which are generally indistinguishable. This is not surprising, since the smooth barrier assumption approximates barrier profiles with a more complex topology involving multiple local maxima that are too close, or too broad, to yield clear-cut kinks in the chevron data. In this work, we have reconstructed the transition state shifts as a function of protein stability over a wide stability range for three small globular proteins, to screen for fingerprints more sensitive for different barrier profiles. We show that such an analysis represents a valuable test for the discrimination between the two different scenarios.

  • 14.
    Haglund, Ellinor
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Kadhirvel, Saraboji
    Lindberg, Magnus O.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Logan, Derek T.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Trimming down a protein structure to its bare foldons: spatial organization of the cooperative unit2012Inngår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 287, nr 4, s. 2731-2738Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Folding of the ribosomal protein S6 is a malleable process controlled by two competing, and partly overlapping, folding nuclei. Together, these nuclei extend over most of the S6 structure, except the edge strand β2, which is consistently missing in the folding transition states; despite being part of the S6 four-stranded sheet, β2 seems not to be part of the cooperative unit of the protein. The question is then whether β2 can be removed from the S6 structure without compromising folding cooperativity or native state integrity. To investigate this, we constructed a truncated variant of S6 lacking β2, reducing the size of the protein from 96 to 76 residues (S6(Δβ2)). The new S6 variant expresses well in Escherichia coli and has a well dispersed heteronuclear single quantum correlation spectrum and a perfectly wild-type-like crystal structure, but with a smaller three-stranded β-sheet. Moreover, S6(Δβ2) displays an archetypical v-shaped chevron plot with decreased slope of the unfolding limb, as expected from a protein with maintained folding cooperativity and reduced size. The results support the notion that foldons, as defined by the structural distribution of the folding nuclei, represent a property-based level of hierarchy in the build-up of larger protein structures and suggest that the role of β2 in S6 is mainly in intermolecular binding, consistent with the position of this strand in the ribosomal assembly.

  • 15.
    Haglund, Ellinor
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Lindberg, Magnus O.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Changes of protein folding pathways by circular permutation. Overlapping nuclei promote global cooperativity.2008Inngår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 283, nr 41, s. 27904-27915Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The evolved properties of proteins are not limited to structure and stability but also include their propensity to undergo local conformational changes. The latter, dynamic property is related to structural cooperativity and is controlled by the folding-energy landscape. Here we demonstrate that the structural cooperativity of the ribosomal protein S6 is optimized by geometric overlap of two competing folding nuclei: they both include the central beta-strand 1. In this way, folding of one nucleus catalyzes the formation of the other, contributing to make the folding transition more concerted overall. The experimental evidence is provided by an extended set of circular permutations of S6 that allows quantitative analysis of pathway plasticity at the level of individual side chains. Because similar overlap between competing nuclei also has been discerned in other proteins, we hypothesize that the coupling of several small nuclei into extended "supernuclei" represents a general principle for propagating folding cooperativity across large structural distances.

  • 16.
    Haglund, Ellinor
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Öman, Tommy
    Department of chemistry, Umeå university.
    Lind, Jesper
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Öhman, Anders
    Department of chemistry, Umeå university.
    Mäler, Lena
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    The HD-exchange motions of ribosomal protein S6 are insensitive to reversal of the protein-folding pathway.2009Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 1091-6490, Vol. 106, nr 51, s. 21619-21624Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    An increasing number of protein structures are found to encompass multiple folding nuclei, allowing their structures to be formed by several competing pathways. A typical example is the ribosomal protein S6, which comprises two folding nuclei (sigma1 and sigma2) defining two competing pathways in the folding energy landscape: sigma1 --> sigma2 and sigma2 --> sigma1. The balance between the two pathways, and thus the order of folding events, is easily controlled by circular permutation. In this study, we make use of this ability to manipulate the folding pathway to demonstrate that the dynamic motions of the S6 structure are independent of how the protein folds. The HD-exchange protection factors remain the same upon complete reversal of the folding order. The phenomenon arises because the HD-exchange motions and the high-energy excitations controlling the folding pathway occur at separated free-energy levels: the Boltzmann distribution of unproductive unfolding attempts samples all unfolding channels in parallel, even those that end up in excessively high barriers. Accordingly, the findings provide a simple rationale for how to interpret native-state dynamics without the need to invoke fluctuations off the normal unfolding reaction coordinate.

  • 17. Hu, Hai-Xi
    et al.
    Jiang, Yong-Liang
    Zhao, Meng-Xi
    Cai, Kun
    Liu, Sanling
    Wen, Bin
    Lv, Pei
    Zhang, Yonghui
    Peng, Junhui
    Zhong, Hui
    Yu, Hong-Mei
    Ren, Yan-Min
    Zhang, Zhiyong
    Tian, Changlin
    Wu, Qingfa
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Zhang, Cheng-Cai
    Chen, Yuxing
    Zhou, Cong-Zhao
    Structural insights into HetR-PatS interaction involved in cyanobacterial pattern formation2015Inngår i: Scientific Reports, E-ISSN 2045-2322, Vol. 5, artikkel-id 16470Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The one-dimensional pattern of heterocyst in the model cyanobacterium Anabaena sp. PCC 7120 is coordinated by the transcription factor HetR and PatS peptide. Here we report the complex structures of HetR binding to DNA, and its hood domain (HetR(Hood)) binding to a PatS-derived hexapeptide (PatS6) at 2.80 and 2.10 angstrom, respectively. The intertwined HetR dimer possesses a couple of novel HTH motifs, each of which consists of two canonical alpha-helices in the DNA-binding domain and an auxiliary alpha-helix from the flap domain of the neighboring subunit. Two PatS6 peptides bind to the lateral clefts of HetR(Hood), and trigger significant conformational changes of the flap domain, resulting in dissociation of the auxiliary alpha-helix and eventually release of HetR from the DNA major grove. These findings provide the structural insights into a prokaryotic example of Turing model.

  • 18. Hubner, Isaac A.
    et al.
    Lindberg, Magnus
    Haglund, Ellinor
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliverberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Shakhnovich, Eugene I.
    Common motifs and topological effects in the protein folding transition state.2006Inngår i: Journal of Molecular Biology, ISSN 0022-2836, E-ISSN 1089-8638, ISSN 0022-2836, Vol. 359, nr 4, s. 1075-1085Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Through extensive experiment, simulation, and analysis of protein S6 (IRIS), we find that variations in nucleation and folding pathway between circular permutations are determined principally by the restraints of topology and specific nucleation, and affected by changes in chain entropy. Simulations also relate topological features to experimentally measured stabilities. Despite many sizable changes in Φ values and the structure of the transition state ensemble that result from permutation, we observe a common theme: the critical nucleus in each of the mutants share a subset of residues that can be mapped to the critical nucleus residues of the wild-type. Circular permutations create new N and C termini, which are the location of the largest disruption of the folding nucleus, leading to a decrease in both Φ values and the role in nucleation. Mutant nuclei are built around the wild-type nucleus but are biased towards different parts of the S6 structure depending on the topological and entropic changes induced by the location of the new N and C termini.

  • 19. Hörnberg, Andreas
    et al.
    Logan, Derek T
    Marklund, Stefan L
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    The coupling between disulphide status, metallation and dimer interface strength in Cu/Zn superoxide dismutase.2007Inngår i: J Mol Biol, ISSN 0022-2836, Vol. 365, nr 2, s. 333-42Artikkel i tidsskrift (Fagfellevurdert)
  • 20.
    Johansson, Ann-Sofi
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Vestling, Monika
    Zetterström, Per
    Lang, Lisa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Leinartaitė, Lina
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Karlström, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Marklund, Stefan L.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Cytotoxicity of superoxide dismutase 1 in cultured cells is linked to Zn2+ chelation2012Inngår i: PLOS ONE, E-ISSN 1932-6203, Vol. 7, nr 4, s. e36104-Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Neurodegeneration in protein-misfolding disease is generally assigned to toxic function of small, soluble protein aggregates. Largely, these assignments are based on observations of cultured neural cells where the suspect protein material is titrated directly into the growth medium. In the present study, we use this approach to shed light on the cytotoxic action of the metalloenzyme Cu/Zn superoxide dismutase 1 (SOD1), associated with misfolding and aggregation in amyotrophic lateral sclerosis (ALS). The results show, somewhat unexpectedly, that the toxic species of SOD1 in this type of experimental setting is not an aggregate, as typically observed for proteins implicated in other neuro-degenerative diseases, but the folded and fully soluble apo protein. Moreover, we demonstrate that the toxic action of apoSOD1 relies on the protein's ability to chelate Zn(2+) ions from the growth medium. The decreased cell viability that accompanies this extraction is presumably based on disturbed Zn(2+) homeostasis. Consistently, mutations that cause global unfolding of the apoSOD1 molecule or otherwise reduce its Zn(2+) affinity abolish completely the cytotoxic response. So does the addition of surplus Zn(2+). Taken together, these observations point at a case where the toxic response of cultured cells might not be related to human pathology but stems from the intrinsic limitations of a simplified cell model. There are several ways proteins can kill cultured neural cells but all of these need not to be relevant for neurodegenerative disease.

  • 21.
    Kurnik, Martin
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Hedberg, Linda
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Folding without charges2012Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 109, nr 15, s. 5705-5710Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Surface charges of proteins have in several cases been found to function as structural gatekeepers, which avoid unwanted interactions by negative design, for example, in the control of protein aggregation and binding. The question is then if side-chain charges, due to their desolvation penalties, play a corresponding role in protein folding by avoiding competing, misfolded traps? To find out, we removed all 32 side-chain charges from the 101-residue protein S6 from Thermus thermophilus. The results show that the charge-depleted S6 variant not only retains its native structure and cooperative folding transition, but folds also faster than the wild-type protein. In addition, charge removal unleashes pronounced aggregation on longer timescales. S6 provides thus an example where the bias toward native contacts of a naturally evolved protein sequence is independent of charges, and point at a fundamental difference in the codes for folding and intermolecular interaction: specificity in folding is governed primarily by hydrophobic packing and hydrogen bonding, whereas solubility and binding relies critically on the interplay of side-chain charges.

  • 22.
    Lang, Lisa
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Kurnik, Martin
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Fibrillation precursor of superoxide dismutase 1 revealed by gradual tuning of the protein-folding equilibrium2012Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 109, nr 44, s. 17868-17873Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Although superoxide dismutase 1 (SOD1) stands out as a relatively soluble protein in vitro, it can be made to fibrillate by mechanical agitation. The mechanism of this fibrillation process is yet poorly understood, but attains considerable interest due to SOD1's involvement in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). In this study, we map out the apoSOD1 fibrillation process from how it competes with the global folding events at increasing concentrations of urea: We determine how the fibrillation lag time (τ(lag)) and maximum growth rate (ν(max)) depend on gradual titration of the folding equilibrium, from the native to the unfolded state. The results show that the agitation-induced fibrillation of apoSOD1 uses globally unfolded precursors and relies on fragmentation-assisted growth. Mutational screening and fibrillation m-values (∂ log τ(lag)/∂[urea] and ∂ log ν(max)/∂[urea]) indicate moreover that the fibrillation pathway proceeds via a diffusely bound transient complex that responds to the global physiochemical properties of the SOD1 sequence. Fibrillation of apoSOD1, as it bifurcates from the denatured ensemble, seems thus mechanistically analogous to that of disordered peptides, save the competing folding transition to the native state. Finally, we examine by comparison with in vivo data to what extent this mode of fibrillation, originating from selective amplification of mechanically brittle aggregates by sample agitation, captures the mechanism of pathological SOD1 aggregation in ALS.

  • 23.
    Lang, Lisa
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Zetterström, Per
    Brännström, Thomas
    Marklund, Stefan L.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    SOD1 aggregation in ALS mice shows simplistic test tube behavior2015Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 112, nr 32, s. 9878-9883Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    A longstanding challenge in studies of neurodegenerative disease has been that the pathologic protein aggregates in live tissue are not amenable to structural and kinetic analysis by conventional methods. The situation is put in focus by the current progress in demarcating protein aggregation in vitro, exposing new mechanistic details that are now calling for quantitative in vivo comparison. In this study, we bridge this gap by presenting a direct comparison of the aggregation kinetics of the ALS-associated protein superoxide dismutase 1 (SOD1) in vitro and in transgenic mice. The results based on tissue sampling by quantitative antibody assays show that the SOD1 fibrillation kinetics in vitro mirror with remarkable accuracy the spinal cord aggregate buildup and disease progression in transgenic mice. This similarity between in vitro and in vivo data suggests that, despite the complexity of live tissue, SOD1 aggregation follows robust and simplistic rules, providing new mechanistic insights into the ALS pathology and organism-level manifestation of protein aggregation phenomena in general.

  • 24.
    Leeb, Sarah
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Patchiness regarding protein surface properties modulates diffusive transient interactions in Escherichia coliManuskript (preprint) (Annet vitenskapelig)
  • 25.
    Leeb, Sarah
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Sörensen, Therese
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    The unfolded ß-barrel of SOD1 is in a compact state, stabilised by long-range hydrophobic contacts.Manuskript (preprint) (Annet vitenskapelig)
    Abstract [en]

    The unfolded state of a globular protein in a physiologically relevant environment is by no means an inert random coil.  On the contrary, its structural and dynamic properties are crucial for e.g., protein folding and aggregation.  Despite its importance, it has been studied relatively sparsely, which is partly due to its low population which tend to obstruct detailed biophysical characterization.  Here, introduction of two destabilizing core mutations allow us to study the unfolded state of the central b-barrel of Superoxide Dismutase 1 under native conditions.  

    In order to structurally characterise the unfolded state, we use high-resolution nuclear magnetic resonance (NMR), including paramagnetic relaxation enhancement, to obtain constraints for the generation of unfolded ensembles.  The results show that the unfolded state is more compact than the chemically denatured state of the same protein.  This compacted state seems to be stabilised by long-range hydrophobic contacts, out of which many coincide with those found in the native state.  We also investigated the previously observed destabilising effect on the unfolded state by a poly-anion, and find that; the interaction does not alter the overall ensemble dimensions, nor the pattern in native-like contacts.  On the other hand, addition of the chemical denaturant urea results in a more expanded state.  The varying compaction with different co-solutes was validated by pulsed-field gradient NMR diffusion measurements.  

    Unlike helical proteins, b-proteins lack the ability to fulfil hydrogen bonds by local native interactions. This forces specific prerequisites on the collapsed pre-folding state.  Here, the compaction is enabled by both native-like and non-native long-range contacts in the unfolded ensemble, and we suggest that the average topology of the collapsed state is determined by the sequence distribution of hydrophobic patches, separated by non-interacting hydrophilic clusters. 

  • 26.
    Leeb, Sarah
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Sörensen, Therese
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Yang, Fan
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Xin, Mu
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Diffusive protein interactions in human versus bacterial cells2020Inngår i: Current Research in Structural Biology, E-ISSN 2665-928X, Vol. 2, s. 68-78Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Random encounters between proteins in crowded cells are by no means passive, but found to be under selective control. This control enables proteome solubility, helps to optimise the diffusive search for interaction partners, and allows for adaptation to environmental extremes. Interestingly, the residues that modulate the encounters act mesoscopically through protein surface hydrophobicity and net charge, meaning that their detailed signatures vary across organisms with different intracellular constraints. To examine such variations, we use in-cell NMR relaxation to compare the diffusive behaviour of bacterial and human proteins in both human and Escherichia coli cytosols. We find that proteins that ‘stick’ in E. coli are generally less restricted in mammalian cells. Furthermore, the rotational diffusion in the mammalian cytosol is less sensitive to surface-charge mutations. This implies that, in terms of protein motions, the mammalian cytosol is more forgiving to surface alterations than E. coli cells. The cellular differences seem not linked to the proteome properties per se, but rather to a 6-fold difference in protein concentrations. Our results outline a scenario in which the tolerant cytosol of mammalian cells, found in long-lived multicellular organisms, provides an enlarged evolutionary playground, where random protein-surface mutations are less deleterious than in short-generational bacteria.

  • 27.
    Leeb, Sarah
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Yang, Fan
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Connecting Longitudinal and Transverse Relaxation Rates in Live-Cell NMR2020Inngår i: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 124, nr 47, s. 10698-10707Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    In the cytosolic environment, protein crowding and Brownian motions result in numerous transient encounters. Each such encounter event increases the apparent size of the interacting molecules, leading to slower rotational tumbling. The extent of transient protein complexes formed in live cells can conveniently be quantified by an apparent viscosity, based on NMR-detected spin-relaxation measurements, that is, the longitudinal (T-1) and transverse (T-2) relaxation. From combined analysis of three different proteins and surface mutations thereof, we find that T-2 implies significantly higher apparent viscosity than T-1. At first sight, the effect on T-1 and T-2 seems thus nonunifiable, consistent with previous reports on other proteins. We show here that the T-1 and T-2 deviation is actually not a inconsistency but an expected feature of a system with fast exchange between free monomers and transient complexes. In this case, the deviation is basically reconciled by a model with fast exchange between the free-tumbling reporter protein and a transient complex with a uniform 143 kDa partner. The analysis is then taken one step further by accounting for the fact that the cytosolic content is by no means uniform but comprises a wide range of molecular sizes. Integrating over the complete size distribution of the cytosolic interaction ensemble enables us to predict both T-1 and T-2 from a single binding model. The result yields a bound population for each protein variant and provides a quantification of the transient interactions. We finally extend the approach to obtain a correction term for the shape of a database-derived mass distribution of the interactome in the mammalian cytosol, in good accord with the existing data of the cellular composition.

  • 28. Leeb, Sarah
    et al.
    Yang, Fan
    Oliveberg, Mikael
    Danielsson, Jens
    Connecting longitudinal and transverse relaxation rates in live-cell NMRInngår i: Artikkel i tidsskrift (Fagfellevurdert)
  • 29.
    Leinartaité, Lina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    ALS-provoking SOD1 mutations benign to the apo state compromise the protein’s ability to retain metalsManuskript (preprint) (Annet vitenskapelig)
  • 30.
    Leinartaité, Lina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Pamment, Ylva
    Kovachev, Petar
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Dynamics of the SOD1 functional loops – disorder and fluctuations of the apo state can both be triggered and prevented by metallationManuskript (preprint) (Annet vitenskapelig)
  • 31.
    Leinartaité, Lina
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Saraboji, Kadhirvel
    Nordlund, Anna
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Logan, Derek T.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Folding catalysis by transient coordination of Zn2+ to the Cu ligands of the ALS-associated enzyme Cu/Zn superoxide dismutase 12010Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 132, nr 38, s. 13495-504Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    How coordination of metal ions modulates protein structures is not only important for elucidating biological function but has also emerged as a key determinant in protein turnover and protein-misfolding diseases. In this study, we show that the coordination of Zn(2+) to the ALS-associated enzyme Cu/Zn superoxide dismutase (SOD1) is directly controlled by the protein's folding pathway. Zn(2+) first catalyzes the folding reaction by coordinating transiently to the Cu ligands of SOD1, which are all contained within the folding nucleus. Then, after the global folding transition has commenced, the Zn(2+) ion transfers to the higher affinity Zn site, which structures only very late in the folding process. Here it remains dynamically coordinated with an off rate of ∼10(-5) s(-1). This relatively rapid equilibration of metals in and out of the SOD1 structure provides a simple explanation for how the exceptionally long lifetime, >100 years, of holoSOD1 is still compatible with cellular turnover: if a dissociated Zn(2+) ion is prevented from rebinding to the SOD1 structure then the lifetime of the protein is reduced to a just a few hours.

  • 32.
    Lindberg, Magns O.
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Haglund, Ellinor
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Hubner, Isaac A.
    Shakhnovich, Eugene I.
    Oliverberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Identification of the minimal protein-folding nucleus through loop-entropy perturbations.2006Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 103, nr 11, s. 4083-4088Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    To explore the plasticity and structural constraints of the protein-folding nucleus we have constructed through circular permutation four topological variants of the ribosomal protein S6. In effect, these topological variants represent entropy mutants with maintained spatial contacts. The proteins were characterized at two complementary levels of detail: by φ-value analysis estimating the extent of contact formation in the transition-state ensemble and by Hammond analysis measuring the site-specific growth of the folding nucleus. The results show that, although the loop-entropy alterations markedly influence the appearance and structural location of the folding nucleus, it retains a common motif of one helix docking against two strands. This nucleation motif is built around a shared subset of side chains in the center of the hydrophobic core but extends in different directions of the S6 structure following the permutant-specific differences in local loop entropies. The adjustment of the critical folding nucleus to alterations in loop entropies is reflected by a direct correlation between the φ-value change and the accompanying change in local sequence separation.

  • 33.
    Lindberg, Magnus O
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Malleability of protein folding pathways: a simple reason for complex behaviour.2007Inngår i: Curr Opin Struct Biol, ISSN 0959-440X, Vol. 17, nr 1, s. 21-9Artikkel i tidsskrift (Fagfellevurdert)
  • 34.
    Lobez, Ana Paula
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Wu, Fei
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Moe, Agnes
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Brzezinski, Peter
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Electron transfer in the respiratory chain at low salinityManuskript (preprint) (Annet vitenskapelig)
  • 35.
    Mu, Xin
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Choi, Seongil
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Lang, Lisa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Mowray, David
    Dokholyan, Nikolay V.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Physicochemical code for quinary protein interactions in Escherichia coli2017Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 114, nr 23, s. E4556-E4563Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    How proteins sense and navigate the cellular interior to find their functional partners remains poorly understood. An intriguing aspect of this search is that it relies on diffusive encounters with the crowded cellular background, made up of protein surfaces that are largely nonconserved. The question is then if/how this protein search is amenable to selection and biological control. To shed light on this issue, we examined the motions of three evolutionary divergent proteins in the Escherichia coli cytoplasm by in-cell NMR. The results show that the diffusive in-cell motions, after all, follow simplistic physical-chemical rules: The proteins reveal a common dependence on (i) net charge density, (ii) surface hydrophobicity, and (iii) the electric dipole moment. The bacterial protein is here biased to move relatively freely in the bacterial interior, whereas the human counterparts more easily stick. Even so, the in-cell motions respond predictably to surface mutation, allowing us to tune and intermix the protein's behavior at will. The findings show how evolution can swiftly optimize the diffuse background of protein encounter complexes by just single-point mutations, and provide a rational framework for adjusting the cytoplasmic motions of individual proteins, e.g., for rescuing poor in-cell NMR signals and for optimizing protein therapeutics.

  • 36.
    Mu, Xin
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Quantification of the crowding effect on diffusive protein interactions in Escherichia coli by cell-volume modulationManuskript (preprint) (Annet vitenskapelig)
  • 37.
    Mu, Xin
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Salt effects on protein folding behavior: revealing the molecular origins and limitation of Hofmeister theoryManuskript (preprint) (Annet vitenskapelig)
  • 38.
    Nordlund, Anna
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Leinartaité, Lina
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Saraboji, Kadhirvel
    Aisenbrey, Christopher
    Gröbner, Gerhard
    Zetterström, Per
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Logan, Derek T.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Functional features cause misfolding of the ALS-provoking enzyme SOD12009Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 106, nr 24, s. 9667-72Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The structural integrity of the ubiquitous enzyme superoxide dismutase (SOD1) relies critically on the correct coordination of Cu and Zn. Loss of these cofactors not only promotes SOD1 aggregation in vitro but also seems to be a key prerequisite for pathogenic misfolding in the neurodegenerative disease amyotrophic lateral sclerosis (ALS). We examine here the consequences of Zn(2+) loss by selectively removing the Zn site, which has been implicated as the main modulator of SOD1 stability and disease competence. After Zn-site removal, the remaining Cu ligands can coordinate a nonnative Zn(2+) ion with microM affinity in the denatured state, and then retain this ion throughout the folding reaction. Without the restriction of a metallated Zn site, however, the Cu ligands fail to correctly coordinate the nonnative Zn(2+) ion: Trapping of a water molecule causes H48 to change rotamer and swing outwards. The misligation is sterically incompatible with the native structure. As a consequence, SOD1 unfolds locally and interacts with neighboring molecules in the crystal lattice. The findings point to a critical role for the native Zn site in controlling SOD1 misfolding, and show that even subtle changes of the metal-loading sequence can render the wild-type protein the same structural properties as ALS-provoking mutations. This frustrated character of the SOD1 molecule seems to arise from a compromise between optimization of functional and structural features.

  • 39.
    Nordlund, Anna
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    SOD1-associated ALS: a promising system for elucidating the origin of protein-misfolding disease2008Inngår i: HFSP Journal, ISSN 1955-2068, Vol. 2, nr 6, s. 354-364Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Amyotropic lateral sclerosis (ALS) is a neurodegenerative disease linked to misfolding and aggregation of the homodimeric enzyme superoxide dismutase (SOD1). In contrast to the precursors of other neurodegenerative diseases, SOD1 is a soluble and simple-to-study protein with immunoglobulin-like structure. Also, there are more than 120 ALS-provoking SOD1 mutations at the disposal for detailed elucidation of the disease-triggering factors at molecular level. In this article, we review recent progress in the characterization of the folding and assembly pathway of the SOD1 dimer and how this is affected by ALS-provoking mutations. Despite the diverse nature of these mutations, the results offer so far a surprising simplicity. The ALS-provoking mutations decrease either protein stability or net repulsive charge: the classical hallmarks for a disease mechanism triggered by association of non-native protein. In addition, the mutant data identifies immature SOD1 monomers as the species from which the cytotoxic pathway emerges, and point at compromised folding cooperativity as a key disease determinant. The relative ease by which these data can be obtained makes SOD1 a promising model for elucidating also the origin of other neurodegenerative diseases where the precursor proteins are structurally more elusive.

  • 40. Nordström, Ulrika
    et al.
    Lang, Lisa
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Ekhtiari Bidhendi, Elaheh
    Zetterström, Per
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Andersen, Peter M.
    Marklund, Stefan L.
    Mutant SOD1 aggregates formed in vitro and in cultured cells are polymorphic and differ from those arising in the CNS2023Inngår i: Journal of Neurochemistry, ISSN 0022-3042, E-ISSN 1471-4159, Vol. 164, nr 1, s. 77-93Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Mutations in the human Superoxide dismutase 1 (hSOD1) gene are well-established cause of the motor neuron disease ALS. Patients and transgenic (Tg) ALS model mice carrying mutant variants develop hSOD1 aggregates in the CNS. We have identified two hSOD1 aggregate strains, which both transmit spreading template-directed aggregation and premature fatal paralysis when inoculated into adult transgenic mice. This prion-like spread of aggregation could be a primary disease mechanism in SOD1-induced ALS. Human SOD1 aggregation has been studied extensively both in cultured cells and under various conditions in vitro. To determine how the structure of aggregates formed in these model systems related to disease-associated aggregates in the CNS, we used a binary epitope-mapping assay to examine aggregates of hSOD1 variants G93A, G85R, A4V, D90A, and G127X formed in vitro, in four different cell lines and in the CNS of Tg mice. We found considerable variability between replicate sets of in vitro-generated aggregates. In contrast, there was a high similarity between replicates of a given hSOD1 mutant in a given cell line, but pronounced variations between different hSOD1 mutants and different cell lines in both structures and amounts of aggregates formed. The aggregates formed in vitro or in cultured cells did not replicate the aggregate strains that arise in the CNS. Our findings suggest that the distinct aggregate morphologies in the CNS could result from a micro-environment with stringent quality control combined with second-order selection by spreading ability. Explorations of pathogenesis and development of therapeutics should be conducted in models that replicate aggregate structures forming in the CNS.

  • 41.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Waltz, an exciting new move in amyloid prediction2010Inngår i: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 7, nr 3, s. 187-8Artikkel i tidsskrift (Fagfellevurdert)
  • 42. Olofsson, Maria
    et al.
    Hansson, Sebastian
    Hedberg, Linda
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Logan, Derek T
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Folding of S6 structures with divergent amino acid composition: pathway flexibility within partly overlapping foldons.2007Inngår i: J Mol Biol, ISSN 0022-2836, Vol. 365, nr 1, s. 237-48Artikkel i tidsskrift (Fagfellevurdert)
  • 43. Olofsson, Maria
    et al.
    Kalinin, Stanislav
    Zdunek, Janusz
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Johansson, Lennart B-A
    Tryptophan-BODIPY: a versatile donor-acceptor pair for probing generic changes of intraprotein distances.2006Inngår i: Phys Chem Chem Phys, ISSN 1463-9076, Vol. 8, nr 26, s. 3130-40Artikkel i tidsskrift (Annet vitenskapelig)
  • 44.
    Sandelin, Erik
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Nordlund, Anna
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Andersen, Peter M.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Marklund, Stefan S. L.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Amyotrophic lateral sclerosis-associated copper/zinc superoxide dismutase mutations preferentially reduce the repulsive charge of the proteins2007Inngår i: Journal of Biological Chemistry, ISSN 0021-9258, E-ISSN 1083-351X, Vol. 282, nr 29, s. 21230-21236Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    We provide bioinformatical evidence that protein charge plays a key role in the disease mechanism of amyotrophic lateral sclerosis (ALS). Analysis of 100 ALS-associated mutations in copper/zinc superoxide dismutase (SOD1) shows that these are site-selective with a preference to decrease the proteins' net repulsive charge. For each SOD1 monomer this charge is normally -6. Because biomolecules as a rule maintain net negative charge to assure solubility in the cellular interior, the result lends support to the hypothesis of protein aggregation as an initiating event in the ALS pathogenesis. The strength of the preferential reduction of repulsive charge is higher in SOD1 associated ALS than in other inherited protein disorders.

  • 45.
    Szpryngiel, Scarlett
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Mäler, Lena
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Diffuse binding of Zn2+ to the denatured ensemble of Cu/Zn superoxide dismutase 12015Inngår i: FEBS Open Bio, E-ISSN 2211-5463, Vol. 5, s. 56-63Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The stability and structural properties of the metalloprotein superoxide dismutase 1 (SOD1) are found to depend critically on metal ions. Native SOD1 monomers coordinate one structural Zn2+ and one redox-active Cu2+/1+ to the active site. To do this, the Zn2+ ions need to interact with the SOD1 protein on the denatured side of the folding barrier, prior to the formation of the folding nucleus. In this study, we have examined at residue level the nature of this early Zn2+ binding by NMR studies on the urea denatured-state of SOD1. Nearly complete backbone chemical shift assignments were obtained in 9 M urea at physiological pH, conditions at which NMR studies are scarce. Our results demonstrate that SOD1 is predominantly unstructured under these conditions. Chemical-shift changes upon Zn2+ titration show that denatured SOD1 retains a significant affinity to Zn2+ ions, even in 9 M urea. However, the Zn2+ interactions are not limited to the native metal-binding ligands in the two binding sites, but are seen for all His residues. Moreover, the native Cu2+/1+ ligand H46 seems not to bind as well as the other His residues, while the nearby non-native H43 does bind, indicating that the binding geometry is relaxed. The result suggests that the Zn2+-binding observed to catalyze folding of SOD1 in physiological buffer is initiated by diffuse, non-specific coordination to the coil, which subsequently funnels by ligand exchange into the native coordination geometry of the folded monomer. Altogether, this diffuse binding is a result with fundamental implications for folding of metalloproteins in general.

  • 46.
    Sörensen, Therese
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Leeb, Sarah
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Danielsson, Jens
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Polyanions Cause Protein Destabilization Similar to That in Live Cells2021Inngår i: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 60, nr 10, s. 735-746Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The structural stability of proteins is found to markedly change upon their transfer to the crowded interior of live cells. For some proteins, the stability increases, while for others, it decreases, depending on both the sequence composition and the type of host cell. The mechanism seems to be linked to the strength and conformational bias of the diffusive in-cell interactions, where protein charge is found to play a decisive role. Because most proteins, nucleotides, and membranes carry a net-negative charge, the intracellular environment behaves like a polyanionic (Z:1) system with electrostatic interactions different from those of standard 1:1 ion solutes. To determine how such polyanion conditions influence protein stability, we use negatively charged polyacetate ions to mimic the net-negatively charged cellular environment. The results show that, per Na+ equivalent, polyacetate destabilizes the model protein SOD1barrel significantly more than monoacetate or NaCl. At an equivalent of 100 mM Na+, the polyacetate destabilization of SOD1barrel is similar to that observed in live cells. By the combined use of equilibrium thermal denaturation, folding kinetics, and high-resolution nuclear magnetic resonance, this destabilization is primarily assigned to preferential interaction between polyacetate and the globally unfolded protein. This interaction is relatively weak and involves mainly the outermost N-terminal region of unfolded SOD1barrel. Our findings point thus to a generic influence of polyanions on protein stability, which adds to the sequence-specific contributions and needs to be considered in the evaluation of in vivo data.

  • 47. Teilum, Kaare
    et al.
    Smith, Melanie H
    Schulz, Eike
    Christensen, Lea C
    Solomentsev, Gleb
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Akke, Mikael
    Transient structural distortion of metal-free Cu/Zn superoxide dismutase triggers aberrant oligomerization.2009Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 1091-6490, Vol. 106, nr 43, s. 18273-8Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease linked to the misfolding of Cu/Zn superoxide dismutase (SOD1). ALS-related defects in SOD1 result in a gain of toxic function that coincides with aberrant oligomerization. The structural events triggering oligomerization have remained enigmatic, however, as is the case in other protein-misfolding diseases. Here, we target the critical conformational change that defines the earliest step toward aggregation. Using nuclear spin relaxation dispersion experiments, we identified a short-lived (0.4 ms) and weakly populated (0.7%) conformation of metal-depleted SOD1 that triggers aberrant oligomerization. This excited state emanates from the folded ground state and is suppressed by metal binding, but is present in both the disulfide-oxidized and disulfide-reduced forms of the protein. Our results pinpoint a perturbed region of the excited-state structure that forms intermolecular contacts in the earliest nonnative dimer/oligomer. The conformational transition that triggers oligomerization is a common feature of WT SOD1 and ALS-associated mutants that have widely different physicochemical properties. But compared with WT SOD1, the mutants have enhanced structural distortions in their excited states, and in some cases slightly higher excited-state populations and lower kinetic barriers, implying increased susceptibility to oligomerization. Our results provide a unified picture that highlights both (i) a common denominator among different SOD1 variants that may explain why diverse mutations cause the same disease, and (ii) a structural basis that may aid in understanding how different mutations affect disease propensity and progression.

  • 48.
    Vallina Estrada, Eloy
    et al.
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Oliveberg, Mikael
    Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
    Physicochemical classification of organisms2022Inngår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 119, nr 19, artikkel-id e2122957119Artikkel i tidsskrift (Fagfellevurdert)
    Abstract [en]

    The hypervariable residues that compose the major part of proteins’ surfaces are generally considered outside evolutionary control. Yet, these “nonconserved” residues determine the outcome of stochastic encounters in crowded cells. It has recently become apparent that these encounters are