Change search
Refine search result
1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Rows per page
  • 5
  • 10
  • 20
  • 50
  • 100
  • 250
Sort
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
  • Standard (Relevance)
  • Author A-Ö
  • Author Ö-A
  • Title A-Ö
  • Title Ö-A
  • Publication type A-Ö
  • Publication type Ö-A
  • Issued (Oldest first)
  • Issued (Newest first)
  • Created (Oldest first)
  • Created (Newest first)
  • Last updated (Oldest first)
  • Last updated (Newest first)
  • Disputation date (earliest first)
  • Disputation date (latest first)
Select
The maximal number of hits you can export is 250. When you want to export more records please use the Create feeds function.
  • 1.
    Dorst, Kevin
    et al.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Engström, Olof
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Angles d'Ortoli, Thibault
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Mobarak, Hani
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Ebrahemi, Azad
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Fagerberg, Ulf
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Whitfield, Dennis M.
    Widmalm, Göran
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    On the influence of solvent on the stereoselectivity of glycosylation reactions2024In: Carbohydrate Research, ISSN 0008-6215, E-ISSN 1873-426X, Vol. 535, article id 109010Article in journal (Refereed)
    Abstract [en]

    Methodology development in carbohydrate chemistry entails the stereoselective formation of C-O bonds as a key step in the synthesis of oligo- and polysaccharides. The anomeric selectivity of a glycosylation reaction is affected by a multitude of parameters, such as the nature of the donor and acceptor, activator/promotor system, temperature and solvent. The influence of different solvents on the stereoselective outcome of glycosylation reactions employing thioglucopyranosides as glycosyl donors with a non-participating protecting group at position 2 has been studied. A large change in selectivity as a function of solvent was observed and a correlation between selectivity and the Kamlet-Taft solvent parameter pi* was found. Furthermore, molecular modeling using density functional theory methodology was conducted to decipher the role of the solvent and possible reaction pathways were investigated.

  • 2.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Highly Combinatorial Reshaping of the Candida antarctica lipase A Substrate Pocket Using an Extremely Condensed LibraryManuscript (preprint) (Other academic)
    Abstract [en]

    A highly combinatorial structure based protein engineering method is demonstrated resulting in a thorough modification of the binding pocket of Candida antarctica lipase A (CALA). Nine amino acid sites surrounding the entire pocket were simultaneously mutated, contributing to a sculpting of the substrate pocket toward a sterically demanding substrate, an ibuprofen ester. The best variant was highly active and displayed remarkable increase in enantioselectivity toward the substrate, with an E-value of 101, compared to the wild type CALA that poor activity and possesses an E-value of 3.4. The potential mutations introduced were a highly reduced set of amino acids, containing only the wild type residue and an alternative residue, preferably a smaller one with similar properties. These minimal ‘binary’ sets allow for extremely condensed protein libraries. The choice of amino acid sites were based on a computer model, with the substrate forcibly bound in the active site. This highly combinatorial method can be used to obtain tailor-made enzymes that are active toward substrates that are not normally accepted by the enzyme. When multiple sites are altered simultaneously, there is a higher possibility of obtaining positive synergistic effects, and the protein fitness landscape is explored efficiently.

  • 3.
    Sandström, Anders G.
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    Protein Engineering of Candida antarctica Lipase A: Enhancing Enzyme Properties by Evolutionary and Semi-Rational Methods2010Doctoral thesis, comprehensive summary (Other academic)
    Abstract [en]

    Enzymes are gaining increasing importance as catalysts for selective transformations in organic synthetic chemistry. The engineering and design of enzymes is a developing, growing research field that is employed in biocatalysis. In the present thesis, combinatorial protein engineering methods are applied for the development of Candida antarctica lipase A (CALA) variants with broader substrate scope and increased enantioselectivity. Initially, the structure of CALA was deduced by manual modelling and later the structure was established by X-ray crystallography. The elucidation of the structure of CALA revealed several biocatalytically interesting features. With the knowledge derived from the enzyme structure, enzyme variants were produced via iterative saturation mutagenesis (ISM), a powerful protein engineering approach. Several of these variants were highly active and enantioselective towards bulky esters. Furthermore, an extensively combinatorial protein engineering approach was developed and investigated. A CALA variant with a spacious substrate binding pocket that can accommodate an unusually bulky substrate, an ester derivate of the non-steroidal anti-inflammatory drug (S)-ibuprofen, was obtained with this approach.

    Download full text (pdf)
    FULLTEXT02
    Download (pdf)
    ERRATA01
  • 4.
    Shahid, Saher
    et al.
    Stockholm University, Faculty of Science, Department of Biochemistry and Biophysics. University of the Punjab, Pakistan.
    Batool, Sana
    Khaliq, Aasia
    Ahmad, Sajjad
    Batool, Hina
    Sajjad, Muhammad
    Akhtar, Muhammad Waheed
    Improved catalytic efficiency of chimeric xylanase 10B from Thermotoga petrophila RKU1 and its synergy with cellulases2023In: Enzyme and microbial technology, ISSN 0141-0229, E-ISSN 1879-0909, Vol. 166, article id 110213Article in journal (Refereed)
    Abstract [en]

    TpXyl10B is a glycoside hydrolase family 10 xylanase of hyperthermophile Thermotoga petrophila RKU-1. This enzyme is of considerable importance due to its thermostability. However, in its native state, this enzyme does not possess any carbohydrate-binding module (CBM) for efficient binding to plant biomass. In this study CBM6 from Clostridium thermocellum was attached to the N- and C-termini of TpXyl10B, thereby producing the variants TpXyl10B-B6C and TpXyl10B-CB6, respectively. TpXyl10B-B6C showed 5–7 folds increased activity on Beechwood xylan and the different types of plant biomass as compared to that from the catalytic domain only. However, the activity of TpXyl10B-CB6 decreased 0.6–0.8 folds on Beechwood xylan and plant biomass compared to the catalytic domain. We explained these results through molecular modeling, which showed that binding residues of CBM6's cleft B, which were previously reported to show no contribution towards binding due to steric hindrance from a loop region, were exposed in a favorable position in TpXyl10B-B6C such that they efficiently bound the substrate. In contrast, these binding residues of CBM6 in TpXyl10B-CB6 were exposed opposite to the catalytic residues; thus, binding to the substrate resulted in decreased exposure of catalytic residues to the substrate. CD spectroscopy and thermostability assays showed that TpXyl10B-B6C was highly thermostable, having a melting point > 90 °C, which is relatively higher than that of the other variant, TpXyl10B-CB6. In addition, this xylanase variant showed synergism with cellulases for the hydrolysis of plant biomass. Therefore, TpXyl10B-B6C, an engineered xylanase in this study, can be a valuable candidate for industrial applications.

  • 5. Sheng, Xiang
    et al.
    Himo, Fahmi
    Stockholm University, Faculty of Science, Department of Organic Chemistry.
    The Quantum Chemical Cluster Approach in Biocatalysis2023In: Accounts of Chemical Research, ISSN 0001-4842, E-ISSN 1520-4898, Vol. 56, no 8, p. 938-947Article, review/survey (Refereed)
    Abstract [en]

    CONSPECTUS: The quantum chemical cluster approach has been used for modeling enzyme active sites and reaction mechanisms for more than two decades. In this methodology, a relatively small part of the enzyme around the active site is selected as a model, and quantum chemical methods, typically density functional theory, are used to calculate energies and other properties. The surrounding enzyme is modeled using implicit solvation and atom fixing techniques. Over the years, a large number of enzyme mechanisms have been solved using this method. The models have gradually become larger as a result of the faster computers, and new kinds of questions have been addressed. In this Account, we review how the cluster approach can be utilized in the field of biocatalysis. Examples from our recent work are chosen to illustrate various aspects of the methodology. The use of the cluster model to explore substrate binding is discussed first. It is emphasized that a comprehensive search is necessary in order to identify the lowest-energy binding mode(s). It is also argued that the best binding mode might not be the productive one, and the full reactions for a number of enzyme–substrate complexes have therefore to be considered to find the lowest-energy reaction pathway. Next, examples are given of how the cluster approach can help in the elucidation of detailed reaction mechanisms of biocatalytically interesting enzymes, and how this knowledge can be exploited to develop enzymes with new functions or to understand the reasons for lack of activity toward non-natural substrates. The enzymes discussed in this context are phenolic acid decarboxylase and metal-dependent decarboxylases from the amidohydrolase superfamily. Next, the application of the cluster approach in the investigation of enzymatic enantioselectivity is discussed. The reaction of strictosidine synthase is selected as a case study, where the cluster calculations could reproduce and rationalize the selectivities of both the natural and non-natural substrates. Finally, we discuss how the cluster approach can be used to guide the rational design of enzyme variants with improved activity and selectivity. Acyl transferase from Mycobacterium smegmatis serves as an instructive example here, for which the calculations could pinpoint the factors controlling the reaction specificity and enantioselectivity. The cases discussed in this Account highlight thus the value of the cluster approach as a tool in biocatalysis. It complements experiments and other computational techniques in this field and provides insights that can be used to understand existing enzymes and to develop new variants with tailored properties.

1 - 5 of 5
CiteExportLink to result list
Permanent link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf