
A Proof and Formalization of the Initiality Conjecture of Dependent
Type Theory

Menno de Boer

mennodeboer94@gmail.com

AProof and Formalization of the Initiality
Conjecture of Dependent Type Theory

Menno de Boer

mennodeboer94@gmail.com

©Menno de Boer, Stockholm 2020

Printed by E-Print AB 2020

Distributor: Department of Mathematics, Stockholm University

Abstract

In this licentiate thesis we present a proof of the initiality conjecture for Martin-
Löf’s type theory with 0, 1, N, � +++ �, Π��, Σ��, Id�(D, E), a countable hier-
archy of universes (U8)8∈N closed under these type constructors and with type
of elements (El8 (0))8∈N. We employ the categorical semantics of contextual
categories. The proof is based on a formalization in the proof assistant Agda
done by Guillaume Brunerie and the author. This work was part of a joint
project with Peter LeFanu Lumsdaine and Anders Mörtberg, who are develop-
ing a separate formalization of this conjecture with respect to categories with
attributes and using the proof assistant Coq over the UniMath library instead.
Results from this project are planned to be published in the future.

We start by carefully setting up the syntax and rules for the dependent type
theory in question followed by an introduction to contextual categories. We
then define the partial interpretation of raw syntax into a contextual category
and we prove that this interpretation is total on well-formed input. By doing
so, we define a functor from the term model, which is built out of the syntax,
into any contextual category and we show that any two such functors are equal.
This establishes that the term model is initial among contextual categories.
At the end we discuss details of the formalization and future directions for
research. In particular, we discuss a memory issue that arose in type checking
the formalization and how it was resolved.

Sammanfattning

In denna licentiatavhandling presenterar vi ett bevis av initialitetsförmodan för
Martin-Löfs typteori med 0, 1, N, �+++ �,Π��, Σ��, Id�(D, E), en uppräknelig
hierarki av universum (U8)8∈N slutna under dessa typkonstruktorer och med typ
av element (El8 (0))8∈N. Vi använder den kategoriska semantiken för kontextu-
ella kategorier. Beviset är baserat på en formalisering i bevisassistenten Agda
utförd av Guillaume Brunerie och författaren. Detta var en del av ett gemensamt
projekt med Peter LeFanu Lumsdaine och Anders Mörtberg, vilka arbetar med
en separat formalisering av denna förmodan med avseende på kategorier med
attribut och använder bevisassistenten Coq över UniMath biblioteket istället.
Resultaten från detta projekt planeras publiceras i framtiden.

Vi börjar med att noggrant beskriva syntax och regler för den beroende
typteorin i fråga följt av en introduktion om kontextuella kategorier. Sedan
definierar vi en partiell tolkning av rå syntax i en kontextuella kategori och
vi bevisar att denna tolkning är total på välformad indata. Genom att göra det
definierar vi en funktor från termmodellen som konstruerats från syntaxen i en
kontextuell kategori och vi visar att två sådana funktorer är lika. Detta fastställer
att termmodellen är initial bland kontextuella kategorier. I slutet kommer vi att
diskutera vår formalisering och eventuella framtida forskningsinriktningar. I
synnerhet diskuterar vi ett minnesproblem som uppstod under typcheckning av
formaliseringen och hur det kan lösas.

Acknowledgements

Iwould like to take this opportunity to thank a number of people that have helped
me during my work on this licentiate thesis and my PhD studies in general.
First and foremost to my main supervisor Dr. Peter LeFanu Lumsdaine for his
excellent support, great insights and our many fruitful discussions and secondly
to Dr. Guillaume Brunerie for our collaboration during this particular project
and his many insights in working with Agda. Next, to Prof. Erik Palmgren† for
his time being my second supervisor, who sadly passed away after the first year
of my PhD studies. A special thanks to Dr. Alexander Berglund for stepping
in as the replacement second supervisor, but also for his support as director of
PhD studies at the department of mathematics at Stockholm University.

I would also like to thank the department of mathematics at Stockholm
University in general for the nice atmosphere to work in and especially the
Logic Group for the many excellent seminar talks and interesting discussions
regarding various topics. Also thanks to the Dutch Delegation for making after
work hours just as enjoyable.

Finally, I thank my girlfriend Carolien for her support and patience during
the time living in different countries.

Contents

Abstract v

Sammanfattning vii

Acknowledgements ix

1 Introduction 13
1.1 Historic overview of initiality 14
1.2 Metatheory . 17

2 Dependent Type Theory 21
2.1 Raw syntax . 21
2.2 Operations on raw syntax . 25
2.3 Derivations . 34

3 Contextual Categories 47
3.1 Definition of contextual categories 47
3.2 Core structure . 53
3.3 Additional structure from logical rules 62

4 Initiality 75
4.1 Partial interpretation . 75
4.2 Totality . 78
4.3 The proof of the initiality theorem 82

5 Formalization 85
5.1 Agda . 85
5.2 Outline of the files . 87
5.3 On running the formalization yourself 90

6 Future Directions 93

References xcv

Index of Symbols xcix

Index of Terms ci

13

1. Introduction

Dependent type theories have been introduced to model mathematics starting
with the AUTOMATH project by de Bruĳn [dB73]. Objects like R= can be
understood as depending on = ∈ N. Crucially, even mathematical propositions
themselves, such as ∀G.%(G) and ∃G.%(G), can be identified with dependent
types. This observation is called theCurry-Howard isomorphism or proposition
as types.

Per Martin-Löf expanded on these ideas by proposing a constructive foun-
dational system based on types in [ML75] and later [ML84]. Later, Vladimir
Voevodsky built upon these [Voe06] and introduced the univalence axiom re-
sulting in what is now know as homotopy type theory. The main source on this
development is the HoTT book [UFP13].

One of the main features of type theoretic foundations is that they are
suitable for computer implementation. Indeed, homotopy type theory has been
formalized in projects like the HoTT library [BGL+16] and UniMat library
[VAG+].

One difficulty in working with a dependent type theory as a formal system is
the handling of its syntax. Among other things one needs to properly deal with
variables, substitution and possibly multiple derivations of a given judgment.
For this reason it can be preferable to work in a semantic model instead, such as,
but not limited to: contextual categories, categories with families, categories
with attributes or comprehension categories. In these settings the syntactic
subtleties disappear. However, the structure they need in order to interpret more
complicated syntactic constructions can become unreadable. These issues have
been discussed in [KL20, Section 1.2].

Ideally, one could move back and forth between the syntactic and semantic
representation of type theory and work in the one that is more appropriate
for the given situation. This is similar to the soundness and completeness
theorems for first order predicate logic. In the setting of categorical semantics,
the counterpart to this process is called initiality.

In this licentiate thesis we will present a proof of the initiality conjecture for
a dependent type theory with respect to the categorical semantics of contextual
categories. It is based on a formalization done by Guillaume Brunerie and the
author which is available at https://github.com/guillaumebrunerie/ initiality.

https://github.com/guillaumebrunerie/initiality

14 1.1. Historic overview of initiality

The specific version on which this thesis is based is commit 17c2477 (March
27, 2020) and consists roughly of 11000 lines of code. The formalization was
part of a project together with Peter LeFanu Lumsdaine and Anders Mörtberg.
This thesis focuses on the author’s contributions. As ever, it is impossible to
completely disentangle one collaborator’s contributions from others’, but for
the material covered in this thesis, the author was either a primary or equal
contributor, except at a few points where explicitly noted otherwise (included
for context and completeness). In the Agda formalization, the contributions of
the author and Brunerie can be viewed in the repository’s history.

We have been uniform in the treatment of the type constructors we con-
sider, making extensions of the results to larger systems, by adding additional
constructors and axioms, transparent. Moreover, the formalization ensures all
details have been properly checked. However, the author hopes that in the
future a proof of initiality is presented for a general dependent type theory for
which the presented proof can help to better understand the difficulties that may
arise.

At the moment of writing the required memory to type check the entire
formalization quickly exceeds that of most personal computers. This is cur-
rently being fixed by forcing Agda to erase unnecessary data, which can be
justified metatheoretically. The hope is that in the near future this bump can be
solved. We will discuss this particular issue at the point in the proof and when
exploring the formalization itself in Chapter 5.

1.1 Historic overview of initiality
The main reference on the initiality conjecture is the book by Streicher [Str91],
in which initiality was shown for the calculus of constructions. A common
consensus among the community has been that these methods can be extrapo-
lated to larger theories without complications, although the process would be
long and tedious. Therefore, the conjecture is referred to as a ‘folklore’ result.

A strong advocate for solving this controversy was Vladimir Voevodsky†.
He argued that even though the interpretation of various rules had been studied,
the interpretation of dependent type theory itself has yet remained open and
[Str91] was the only “substantial non-trivial analog of this conjecture known”.1
Since Voevodsky’s original post, there have been discussions at various math-
ematical fora about the subject.2

1https://homotopytypetheory.org/2015/01/11/hott-is-not-an-interpretation-of-
mltt-into-abstract-homotopy-theory.

2for instance: https://groups.google.com/forum/#!searchin/homotopytypetheory/
initiality%7Csort:date/homotopytypetheory/1hic3vFc6n0/sNX47YIoAQAJ, https://
nforum.ncatlab.org/discussion/8854/beĳing-talk.

https://github.com/guillaumebrunerie/initiality/tree/17c2477acfa610501269d925f8f44f6fc5cc0781
https://homotopytypetheory.org/2015/01/11/hott-is-not-an-interpretation-of-mltt-into-abstract-homotopy-theory
https://homotopytypetheory.org/2015/01/11/hott-is-not-an-interpretation-of-mltt-into-abstract-homotopy-theory
https://groups.google.com/forum/#!searchin/homotopytypetheory/initiality%7Csort:date/homotopytypetheory/1hic3vFc6n0/sNX47YIoAQAJ
https://groups.google.com/forum/#!searchin/homotopytypetheory/initiality%7Csort:date/homotopytypetheory/1hic3vFc6n0/sNX47YIoAQAJ
https://nforum.ncatlab.org/discussion/8854/beijing-talk
https://nforum.ncatlab.org/discussion/8854/beijing-talk

1. Introduction 15

One response was the initiality project on nLab1 set up byMichael Shulman
around September 2019.2 Its aim was to crowdsource the long and tedious
details to a larger group of mathematicians in a similar vein to the write-up of
the HoTT book [UFP13] and the Polymath project. At the moment of writing
this project has come to a standstill and it is currently undecided whether it will
start up again in the future.

A different response by Peter LeFanu Lumsdaine was to start a project
around October that same year to formalize the conjecture in a proof assistant
instead. He was joined in this project by Guillaume Brunerie, AndersMörtberg
and the author. The project was subsequently split into two teams: Brunerie
and the author would work on a formalization in Agda using the categorical
semantic of contextual categories, while Lumsdaine and Mörtberg would work
on a formalization in Coq over the UniMath library and using categories with
attributes instead.

Precise statement
One of the challenges of initiality is stating the problem at hand sufficiently
precisely. Informally, one can state it as:

The syntax of any dependent type theory forms a category,
called the syntactic category or term model, whose structure de-
pends on the rules of the theory. This category is initial among
all categories possessing this structure, i.e. there exists a unique
structure preserving functor from it to any other such category.

As mentioned before, the initiality conjecture can be read as the categorical
analogue of soundness and completeness for first order logic. The above
statement raises at least two questions:

• What do we consider to be ‘a dependent type theory’?

• What do we mean by ‘all categories sharing this structure’?

Regarding the first question, it is still open what we consider by a general
dependent type theory. Work in this direction has been made by Taichi Uemura
[Uem19] and independently by Andrej Bauer, Philipp Haselwarter and Peter
LeFanu Lumsdaine, although the latter has not yet been published.3 As such,

1https://ncatlab.org/nlab/show/Initiality+Project.
2announcement: https://golem.ph.utexas.edu/category/2018/09/a_communal_-

proof_of_an_initial.html.
3Slides for a talk by Peter LeFanu Lumsdaine given at EUTypes 2018 can be

found at https://cs.au.dk/fileadmin/user_upload/PeterLumsdaine_general-dependent-
type-theories.pdf.

https://ncatlab.org/nlab/show/Initiality+Project
https://golem.ph.utexas.edu/category/2018/09/a_communal_proof_of_an_initial.html
https://golem.ph.utexas.edu/category/2018/09/a_communal_proof_of_an_initial.html
https://cs.au.dk/fileadmin/user_upload/PeterLumsdaine_general-dependent-type-theories.pdf
https://cs.au.dk/fileadmin/user_upload/PeterLumsdaine_general-dependent-type-theories.pdf

16 1.1. Historic overview of initiality

we can only tackle the initiality conjecture for a specific type theory, but
a future goal is still to have a proof of initiality for general type theories.
Nevertheless, having access to a proof for particular cases can help give insight
in the development of the general case.

For the second question, several categorical semantics have been proposed
that capture the structure of the term model, e.g. contextual categories, cat-
egories with families and categories with attributes to name a few. Some of
these notions have been shown to be equivalent [ALV18]. Ideally, initiality is
independent of any such choice. In this thesis we will employ the categorical
semantics given by contextual categories. This particular semantics was also
used in [Str91]. It can be represented as an essentially algebraic theory which
made it very suitable to implement in a proof assistant like Agda.

Treatments in the literature
In this section we want to discuss more in depth and give credit to various cases
in the literature that have aimed to tackle the initiality conjecture by stating the
type theory and the categorical semantics used.

As stated previously [Str91] has been the main source. The type theory
under consideration was the calculus of constructions. This type theory is
significantly smaller than the kinds used today, such as HoTT or UniMath.

In [Hof97, Remark 2.5.8], initiality is stated for a type theory withΠ-types,
a natural number type, and identity types. It is also sketched how to extend this
by a unit and universe type. It is one of the fewwrite-ups that properly treats the
problem, although it leaves a significant part to the reader. One can therefore
only accept the results after they have checked the omitted details themselves.

The previously mentioned initiality project on nLab aimed for a dependent
type theory including only Π-types, although with extensions in mind. It used
the categorical semantics of categories with families. One of its goals was to
write out all of the details once and for all.

In [Yam17], results from [Hof97] are used and expanded upon. Addition-
ally, a system called the equational theory _=1,- is considered which has unique
derivations, allowing for the interpretation function to be defined differently.

In [Cas14], initiality is presented for a type theory with Π-types and one
universe. A technique is presented for producing unique derivations by com-
pressing a given one, which is very specific to the particular presentation of
this system. However, it is unclear whether this technique can be extrapolated
to more complicated systems.

There are other sources in the literature that state initiality either with or
without proof. Regardless, there is still dissatisfaction in the community about
the status of the conjecture. Because of this, it seems appropriate to also

1. Introduction 17

mention to what extend this thesis claims to be sufficient.
The author aims in this write-up to be detailed enough leaving no room

for subtleties to be hiding in the gaps. In particular, we have been careful to
state all definitions we use and any proofs that are omitted in this write-up
can be checked in the formalization. The formalization is self-contained and
publicly available. It can be verified to contain precisely the content it claims
by whoever wishes to do so. Finally, we have given a uniform treatment of the
various type constructors, making it clear how to extend to a larger system in
written form or by contributing to our formalization.

1.2 Metatheory
As this licentiate thesis aims to prove a statement about a foundational system,
we will state the particular metatheory we will work in. However, the goal
has been to write statements and proofs in a way so they can be read both in a
(constructive) type theoretic and a classical set-theoretic foundation. This is in
a similar vein as [AL19, Section 2.1].

The minimal foundation system in which our arguments will work is a
variant of Martin-Löf’s intensional type theory including: Σ-types, with [;
Π-types, with [and function extensionality; inductive definitions such as 0,
1, 2, N and ,-types; quotients; two universes closed under these notions;
propositional truncation and propositional extensionality. For Martin-Löf’s
original presentation, see [ML75] and [ML84]. For an example in which
propositional truncation and quotients are treated we refer to [UFP13].

That being said, the arguments will work in any foundational system that
includes these principles such as classical ZFC, intuitionistic IFZ or an ap-
propriate extension of the calculus of inductive constructions. This latter is
closely related to the metatheory of our formalization, which was done in the
proof assistant Agda. We will expand on this in the following sections and in
Chapter 5.

We will not impose any additional restrictions on the equality of types such
as univalence or UIP. As such, the body of this thesis should be compatible
with univalence and the interpretation of types as classical sets. For readability
we will use ‘set’ instead of ‘type’ on a metalevel and write in a conventional
mathematical language being confident that a reader with a type theoretic
background can make the translation without much effort.

Some type theoretic issues do not exist in a more classical interpretation
and a reader coming from such a background is free to ignore them.

18 1.2. Metatheory

Inductive definitions
In this section we briefly recall the common notation for inductive definitions.
This can either be read as inductively defined types, as the smallest set gener-
ated/closed under the given inference rules or as an algebra freely generated by
these generators.

As a basic example, one can define the natural numbers N inductively by
the inference rules

0 ∈ N
= ∈ N

= + 1 ∈ N

which can be read as stating that 0 is a natural number and if = is a natural
number, so is = + 1. It is also common to write ((=) instead of = + 1, which
highlights that ‘= + 1’ is just a syntactic expression.

Defining a function from N to any other set is done by the process of
induction/recursion. As an example, we define addition by

_ + _ : N × N→ N
< + 0 B <

< + (= + 1) B (< + =) + 1.

We say in this case that addition is defined by structural induction on its
second argument. Inductively defined sets can depend on additional parameters.
An example of this are the finite sets Fin(=) for = ∈ Nwhich can be inductively
generated by the rules

0= ∈ Fin(= + 1)
: ∈ Fin(=)

: += 1 ∈ Fin(= + 1)
.

Informally we can think of Fin(0) = ∅, Fin(1) = {0}, Fin(2) = {0, 1}, etc.
For : ∈ Fin(=) and < ∈ N we define the expression : += < ∈ Fin(= + <)

by structural induction on <

_ += _ : Fin(=) × N→ Fin(= + <)
: += 0 B :

: += (< + 1) B (: += <) +<+= 1.

As an example of the conventional mathematical notation we will employ
in this thesis, we use : < = in written text instead of : ∈ Fin(=).

1. Introduction 19

Propositions
Mathematical logic requires a notion of logical propositions. In a classical
setting this role is filled by the two-element set {0, 1}. In intuitionistic set
theory IZF, or intuitionistic higher-order logic, this is filled more generally
by the subobject classifier (in topos-theoretic language), i.e. P(1). In a type
theoretic setting this role can be filled by considering h-propositions, as in
univalent foundations [UFP13], or by a separate universe of propositions, as in
the calculus of constructions [CH88].

The kind of propositions we use in our formalization is a hierarchy of
universes of strict propositions sProp as described in [GCST19] to which we
refer a reader interested in its metatheoretical properties. The strictness refers
to any two elements of a proposition being judgementally equal. It is worth
noting that strictness should not be required for the results in this thesis. The
other main features of sProp are that any type can be squashed to a proposition,
any proposition can be lifted to a type and its use is compatible with both
UIP and univalence. However, in our formalization we consider equality to be
squashed into sProp. The development only relies on the mere existence of
certain equalities and should not need UIP.

Finally, we also assume proposition extensionality: any two logically equiv-
alent propositions are equal.

Quotients
Quotients are an important tool when dealing with the initiality conjecture as
they are needed to define the term model. A reader who intends to follow our
arguments in a classical background should have no problem with their use.

In a type theoretic setting, this topic is less clear and various different
approaches for introducing quotient types have been proposed. An overview
and discussion can be found in [Li15, Chapter 3]. We present here the particular
kind of quotients we have used in the formalization. The implementation is
due to Brunerie and similar to the presentation in [Li15, Section 3.1.1].

Given a set - and a sProp-valued equivalence relation ∼ we can form the
set -/∼. It comes equipped with a function [−] : - → -/∼ and for each
G, H ∈ - such that G ∼ H an equality [G] = [H]. It satisfies the following
dependent elimination rule: for a family of sets % : -/∼→ Set together with a
function 5 : (G : -) → %([G]) such that if G ∼ H we have 5 ([G]) = 5 ([H]), we
get a function 5 : -/∼→ %(G) satisfying the computation rule 5 ([G]) = 5 (G).

The quotients we are considering can be shown to be effective, i.e. if
[G] = [H] then G ∼ H. This requires propositional extensionality, which is
essentially a formalization of the proof in [Vel15, Proposition 1].

20 1.2. Metatheory

21

2. Dependent Type Theory

In this chapter we start by setting up the dependent type theory that will be
addressed in this thesis. A brief informal description of a dependent type theory
is as a many-sorted language, whose sorts are called types. Its deduction rules
deal with statements we call judgments. Any particular judgment is made from
a given context which is, roughly speaking, a finite list of types in which we
allow an entry to ‘depend’ on all its predecessors. All of these notions will be
treated in this chapter and no additional background knowledge is assumed.

In this thesis we show the initiality conjecture for Martin-Löf’s intensional
type theory with the following type constructors: 0, 1, N, � +++ �, Π�,�, Σ�,�,
Id�(D, E) and a countable hierarchy of universes (U8)8∈N, closed under the
type constructors and with type of elements El8 (0), for a given 8 ∈ N. We will
refer to this type theory as MLTT. All of these constructors have already been
presented in [ML84].

Because the results in this thesis are about the interplay between the syntax
and semantics of dependent type theory, we have chosen to thoroughly include
the precise definitions of syntax we use. Additionally, at the moment there is
no standard convention and approaches in the literature vary in many details.
Although these different approaches usually do not matter, it will matter for us.

A reader that is familiar with the setup of syntax for dependent type theory
should be able to skip most of this chapter. However, we do advise to skim
through it and take note of certain conventions/notation.

2.1 Raw syntax
Just as one has to define the concept of ‘terms’, ‘formulae’ and ‘derivations’
inductively in traditional first order logic, we too must properly define the
syntax of our system.

Types and terms
We will adopt the use of de Bruĳn indices instead of named variables. This
allows us to define type and term expressions indexed by a natural number,
which indicates the length of a context in which they can be formed. This
approach has proven to be very suitable for formalization.

22 2.1. Raw syntax

Let us start by defining the families of sets that contain type and term
expressions over a context of a given length.

Definition 2.1.1. The sets TyExpr(=) and TmExpr(=), where = ∈ N, of raw
type and term expressions, are inductively generated by the following clauses:

0 ∈ TyExpr(=) 1 ∈ TyExpr(=) N ∈ TyExpr(=)

�, � ∈ TyExpr(=)
� +++ � ∈ TyExpr(=)

� ∈ TyExpr(=) � ∈ TyExpr(= + 1)
Π�� ∈ TyExpr(=)

� ∈ TyExpr(=) � ∈ TyExpr(= + 1)
Σ�� ∈ TyExpr(=)

� ∈ TyExpr(=) D, E ∈ TmExpr(=)
Id�(D, E) ∈ TyExpr(=)

8 ∈ N
U8 ∈ TyExpr(=)

8 ∈ N E ∈ TmExpr(=)
El8 (E) ∈ TyExpr(=)

; < =

x; ∈ TmExpr(=)

% ∈ TyExpr(= + 1) D ∈ TmExpr(=)
empty_elim(%, D) ∈ TmExpr(=) ★ ∈ TmExpr(=)

% ∈ TyExpr(= + 1) 3★ ∈ TmExpr(=) D ∈ TmExpr(=)
unit_elim(%, 3★, D) ∈ TmExpr(=)

zero ∈ TmExpr(=)
D ∈ TmExpr(=)

suc(D) ∈ TmExpr(=)

% ∈ TyExpr(= + 1)
3zero ∈ TmExpr(=) 3suc ∈ TmExpr(= + 2) D ∈ TmExpr(=)

ind(%, 3zero, 3suc, D) ∈ TmExpr(=)

�, � ∈ TyExpr(=) 0 ∈ TmExpr(=)
inl(�, �, 0) ∈ TmExpr(=)

�, � ∈ TyExpr(=) 1 ∈ TmExpr(=)
inr(�, �, 1) ∈ TmExpr(=)

�, � ∈ TyExpr(=) % ∈ TyExpr(= + 1)
3inl, 3inr ∈ TmExpr(= + 1) D ∈ TmExpr(=)

match(�, �, %, 3inl, 3inr, D) ∈ TmExpr(=)

� ∈ TyExpr(=) � ∈ TyExpr(= + 1) D ∈ TmExpr(= + 1)
_(�, �, D) ∈ TmExpr(=)

� ∈ TyExpr(=) � ∈ TyExpr(= + 1)
5 ∈ TmExpr(=) 0 ∈ TmExpr(=)

app(�, �, 5 , 0) ∈ TmExpr(=)

� ∈ TyExpr(=) � ∈ TyExpr(= + 1)
0 ∈ TmExpr(=) 1 ∈ TmExpr(= + 1)

pair(�, �, 0, 1) ∈ TmExpr(=)

� ∈ TyExpr(=) � ∈ TyExpr(= + 1) D ∈ TmExpr(=)
pr1(�, �, D) ∈ TmExpr(=)

� ∈ TyExpr(=) � ∈ TyExpr(= + 1) D ∈ TmExpr(=)
pr2(�, �, D) ∈ TmExpr(=)

� ∈ TyExpr(=) 0 ∈ TmExpr(=)
refl(�, 0) ∈ TmExpr(=)

� ∈ TyExpr(=)
% ∈ TyExpr(= + 3) 3refl ∈ TmExpr(= + 1) D ∈ TmExpr(=)

J(�, %, 3refl, D, E, ?) ∈ TmExpr(=)

8 ∈ N
08 ∈ TmExpr(=)

8 ∈ N
18 ∈ TmExpr(=)

8 ∈ N
n8 ∈ TmExpr(=)

8 ∈ N
u8 ∈ TmExpr(=)

8 ∈ N 0, 1 ∈ TmExpr(=)
0 +8 1 ∈ TmExpr(=)

8 ∈ N 0 ∈ TmExpr(=) 1 ∈ TmExpr(= + 1)
c8 (0, 1) ∈ TmExpr(=)

8 ∈ N 0 ∈ TmExpr(=) 1 ∈ TmExpr(= + 1)
f8 (0, 1) ∈ TmExpr(=)

8 ∈ N 0, D, E ∈ TmExpr(=)
id8 (0, D, E) ∈ TmExpr(=)

Remark 2.1.2. We will refer to the various operations above, such as +++ or
pr1, as type and term constructors. We will see later that a constructor is
well-formed over a given context of length =, if all of its input is well-formed
over that same, but possible extended, context. As an example, Π�� will be
well-formed over a context of length =, if � is well-formed over it, and � is
well-formed over this context extended by �.

However, it is important to note that there are a priori no such restrictions
on the input a given type/term constructor can take, i.e. Π�� ∈ TyExpr(=) for
any type expressions � ∈ TyExpr(=) and � ∈ TyExpr(= + 1). This is why we
call the sets TyExpr(=) and TmExpr(=) raw syntax.

In the process of setting up the rules for derivations, one will include
precisely the specification that a raw expression is well-formed.

2. Dependent Type Theory 23

We give a bit of intuition about the syntax presented above. This intuition
will be justified once we have stated the rules of the system.

• 0 is the empty type, which does not contain any terms. One can view
empty_elim(%, D) as the principle of explosion.

• 1 is the unit type, which is generated by★. This will be highlighted with
unit_elim(%, 3★, D).

• N is the type of natural numbers, which is generated by zero and the
successor function suc(D), while ind(%, 3zero, 3suc, D) represents proof
by induction.

• �+++� is the coproduct/sum type of � and �. Terms are generated by terms
of type � via inl(�, �, 0) and by terms of type � by inr(�, �, 1). We
can view match(�, �, %, 3inl, 3inr, D) as a case analysis on D, returning
3inl and 3inr on a terms coming from � and �, respectively.

• Π�� is the type of dependent functions from � to �. We can construct
terms using lambda abstraction _(�, �, D), and eliminate them using
application app(�, �, 5 , 0).

• Σ�� is the type of dependent pairs of terms of � and �. We can construct
terms by pair(�, �, 0, 1), and given a term of this type we can project
to its components using pr1(�, �, D) and pr2(�, �, D).

• Id�(D, E) is the type of identifications of D and E in �. A term of
Id�(D, E) can be seen as an internal equality between D and E. It is
generated by the reflexivity identification refl(�, 0) of type Id�(0, 0).
The term J(�, %, 3refl, D, E, ?) captures what is know as path induction.

• U8 is the type of the universe at level 8. It is generated by terms that code
the ‘basic’ types 08 , 18 and n8 and closed under codes of the other type
formers. For example if 0, 1 are of type U8 , the terms 0+++ 1, c8 (0, 1) and
f8 (0, 1) will also be of type U8 . Moreover, U8+1 contains a code u8 of
U8 . If E : U8 , the type El8 (E) it the type of elements of E. For example,
El8 (n8) will be precisely the type of natural numbers N. In light of this,
for 0 of type U8 and D and E of type El8 (0), the term id8 (0, D, E) will also
be of type U8 .

• If we work in a context of length =, then x; is the variable of the type
at position ;. As previously mentioned, we will use de Bruĳn indices to
index the variables, i.e. in a context of length =, x0 will be of the last
type added to the context while, while x=−1 will be of the very first. For
a slightly different approach using de Buĳn indices, see [AAD07].

24 2.1. Raw syntax

Remark 2.1.3. Observe that x; is not just a variable, but the variable of the
type at position ;. Each position in a context will have precisely one variable
associated with it. If one wants multiple variables of a given type, one will be
forced to extend the context by multiple copies of the same type.

It is not uncommon in the literature to suppress some of the symbols in the
syntax defined above, if certain parts can be deduced from the surroundings.
For instance, one might see app(5 , 0), pair(0, 1), or refl(0).

Contexts and context morphisms
Now that we have our first building blocks in the form of type and term
expressions, we can expand our raw syntax to include raw contexts and raw
context morphisms. We already informally introduced a context as a list of
length = whose entries are types that ‘depend’ on previous ones. The following
definition makes this precise.

Definition 2.1.4. The set Ctx(=), where = ∈ N, of raw contexts of length = is
inductively generated by the following two clauses:

� ∈ Ctx(0)
Γ ∈ Ctx(=) � ∈ TyExpr(=)

Γ, � ∈ Ctx(= + 1)
.

Remark 2.1.5. Again, we emphasize that a priori there is no assumption on
whether � in the second case is actually well-formed in the given context Γ,
just that it is raw expression for the given length. This is what makes Ctx(=)
part of the raw syntax.

We refer to the symbol � as the empty context. A context (((�, �), �), �)
is written simply as (�, �, �).

If we have a context Γ ∈ Ctx(=), and a position ; < = one ought be able
to retrieve some type � ∈ Ctx(= − ;) at that given position in Γ. Intuitively,
one expects x; to be of type � over the context Γ, however that does not work
as x; ∈ TmExpr(=) while � ∈ TyExpr(= − ;). We will be able to address this
after introducing the concept of weakening.

A raw context morphisms consists of a list of = term expressions, all over
a context of length <. The intuitive picture is that a context morphism X is a
translation from a context Γ to a context Δ.

Definition 2.1.6. The set CtxMor(<, =) for<, = ∈ N of raw context morphisms
is inductively generated by the following two clauses:

! ∈ CtxMor(<, 0)
X ∈ CtxMor(<, =) D ∈ TmExpr(<)

X, D ∈ CtxMor(<, = + 1)
.

2. Dependent Type Theory 25

The symbol ! is called the terminal (context) morphism. Again we write a
morphism (((!, D), E), F) simply as (D, E, F).

A prime example of a context morphism is the identity context morphism
id= ∈ CtxMor(=, =) which consists of (G=−1, . . . , G1, G0). However, we will
only be able to define this after we have introduced the concept of weakening.

2.2 Operations on raw syntax
It is possible to define various operations on raw syntax. Two of these are
extremely important: weakening and substitution. In this section we will
introduce these two operations and show to what extent they commute.

Weakening
Suppose we are given an element � ∈ TyExpr(=), which intuitively meant that
� is a type expression in a context of length =. Now, imagine we were to
insert an additional type at a position : in this context (beginning and end point
allowed). Then � should still be ‘the same‘ type expression if we swap all
occurrences of x; with ; ≥ : for x;+1. This concept is captured by the operation
called weakening. For this we first need a helper function, that will capture the
variable shifts.

Definition 2.2.1. For = ∈ N and : < = + 1, we define a function

wVar: (−) : Fin(=) → Fin(= + 1)

by structural induction on ::

wVar0(;) B ; + 1
wVar:+1(0) B 0

wVar:+1(; + 1) B wVar: (;) + 1

Remark 2.2.2. One needs to be a bit careful to check that the above is well
defined, i.e. we have omitted all the subscripts that indicate the specific finite
set we are dealing with.

To define weakening for a general constructor, we need to compensate for
any input over an extension of the context by increasing the position of the
weakening accordingly.

Definition 2.2.3. For = ∈ N and : < = + 1, we define two functions

wTy: (−) : TyExpr(=) → TyExpr(= + 1)

26 2.2. Operations on raw syntax

wTm: (−) : TmExpr(=) → TmExpr(= + 1)

by a mutual structural induction on TyExpr(=) and TmExpr(=). The variable
case is given by

wTm: (x;) B xwVar: (;) ,

while for any other clause, it follows this heuristic pattern:
If construction(8, �, D, . . .) comes from the inductive clause

8 ∈ N � ∈ TyExpr(= + <�) D ∈ TmExpr(= + <D) . . .

construction(8, �, D, . . .) ∈ T-Expr(=)
,

then it is mapped to

construction(8,wTy:+<� (�),wTm:+<D (D), . . .).

This is a raw expression by apply the induction hypotheses and the inference
rule

8 ∈ N wTy:+<� (�) ∈ TyExpr((= + 1) + <�)
wTm:+<D (D) ∈ TmExpr((= + 1) + <D)

construction(8,wTy:+<� (�),wTm:+<D (D), . . .) ∈ T-Expr(= + 1)

To explain the heuristic definition, so let us expand it by giving two exam-
ples. Suppose we wish to construct wTy: (Π��). We know that the expression
Π�� is formed using

� ∈ TyExpr(=) � ∈ TyExpr(= + 1)
Π�� ∈ TyExpr(=)

so <� = 0 and <� = 1. By induction hypothesis, we know that wTy: (�) ∈
TyExpr(= + 1) and wTy:+1(�) ∈ TyExpr((= + 1) + 1) are already constructed
and we see that

wTy: (�) ∈ TyExpr(= + 1) wTy:+1(�) ∈ TyExpr((= + 1) + 1)
Π(wTy: (�)) (wTy:+1(�)) ∈ TyExpr(= + 1)

ensures a raw expression which is assigned to wTy: (Π��). For a more com-
plicated example, consider the J-constructor

� ∈ TyExpr(=)
% ∈ TyExpr(= + 3) 3refl ∈ TmExpr(= + 1) D ∈ TmExpr(=)

J(�, %, 3refl, D, E, ?) ∈ TmExpr(=)

2. Dependent Type Theory 27

with <� = 0, <% = 3, <3refl = 1 and <D = 0. By induction hypothesis we have
constructions

wTy: (�) ∈ TyExpr(= + 1),
wTy:+3(%) ∈ TyExpr((= + 3) + 1) = TyExpr((= + 1) + 3),

wTm:+1(3refl) ∈ TyExpr((= + 1) + 1),
wTm: (D) ∈ TmExpr(= + 1),

which allows us to determine that

J(wTy: (�),wTy:+3(%),wTm:+1(3refl),wTm: (D))

is indeed an element of TyExpr(= + 1).

Remark 2.2.4. We note that in a setting with named variables weakening is
just the identity, which is an argument for that approach.

We can extend the concept of weakening to operations on contexts and
context morphisms. The first captures the process we briefly mentioned at the
beginning of this subsection: inserting a type into a given context at a certain
position.

Definition 2.2.5. For = ∈ N and : < = + 1, we define a function

wCtx: (−,−) : Ctx(=) × TyExpr(= − :) → Ctx(= + 1)

by structural induction on : and Ctx(=)

wCtx0(Γ, �) B (Γ, �)
wCtx:+1((Γ, �), �) B (wCtx: (Γ, �),wTy: (�)).

The observation in this definition is that it is not enough to just insert the
type � at the indicated position : . We need to make sure all types that come
after : are weakened appropriately for the end result to be accepted in the
clauses of Definition 2.1.4.

The connection between the weakening of types and terms will be that if �
and D are well-formed expression in a context Γ of length =, and � is any type
expression containing at most = − : variables, then wTy: (�) and wTm: (D)
will be well-formed expressions over wCtx: (Γ, �).

We can now also define the process of looking up a type expression from a
given concept, as we alluded to earlier.

28 2.2. Operations on raw syntax

Definition 2.2.6. For = ∈ N we define a function

(−) (−) : Ctx(=) × Fin(=) → TyExpr(=)

by structural induction on Fin(=) and Ctx(=)

(Γ, �)0 B wTy0(�),
(Γ, �);+1 B wTy0(Γ;).

The idea behind Γ;, is retrieving � ∈ TyExpr(= − ;) from the position ; in
Γ, and weakening it appropriately, so that it is becomes a raw expression over
the entire context Γ. It will serve as the type of x;.

Weakening of a context morphism amounts to simply weaken all the terms
in the list

Definition 2.2.7. For <, = ∈ N and : < = + 1 we define a function

wMor: (−) : CtxMor(<, =) → CtxMor(< + 1, =)

by structural induction

wMor: (!) B !
wMor: (X, D) B (wMor: (X),wTm: (D))

A definition that uses the above and which will prove to be very important
is taking a morphism, weakening it at the last position and adding to it the last
variable.

Definition 2.2.8. For <, = ∈ N we define a function

wMor+(−) : CtxMor(<, =) → CtxMor(< + 1, = + 1)
wMor+(X) B (wMor0(X), x0)

We use this to define the identity morphism we have described earlier.

Definition 2.2.9. For = ∈ N, we define id= ∈ CtxMor(=, =) by induction on =

id0 B !
id=+1 B wMor+(id=)

Observe that id1 = x0, id2 = (x1, x0), id3 = (x2, x1, x0), etc. as intended.
We will sometimes drop the subscript and write simply id if the length can be
inferred from context.

It turns outwMor+(−) is related to amore general operation onCtxMor(<, =)
which we denote by insertCtxMor: (−,−). It is the process of inserting
D ∈ TmExpr(<) at position : in the sequence of X ∈ CtxMor(<, =).

2. Dependent Type Theory 29

Definition 2.2.10. For <, = ∈ N and : < = + 1, we define the function

insertCtxMor: (−,−) : CtxMor(<, =) × TmExpr(<) → CtxMor(<, = + 1)

by structural induction on :

insertCtxMor0(X, C) B (X, C)
insertCtxMor:+1((X, D), C) B (insertCtxMor: (X, C), D)

Observe the similarities between this definition and wCtx: (−). However,
in this case we don’t have to weaken anything.

Substitution
Suppose that � ∈ TyExpr(=) and we are also given X ∈ CtxMor(<, =). Then
we should be able construct the type expression �[X] ∈ TyExpr(<), which one
gets by replacing any mentioning of x; in � by the term D at position ; in X.
We call this process total substitution. An important special case of this will
be term substitution, in which X ∈ CtxMor(=, = + <) and starts with id=.

As we did with weakening, we first define a helper function that deals with
the variable case.

Definition 2.2.11. For <, = ∈ N we define a function

(−)[−] : Fin(=) × CtxMor(<, =) → TmExpr(<)

by structural induction on Fin(=) and CtxMor(<, =):

0[X, C] B C

(: + 1) [X, C] B : [X],

Now we can define total substitution for arbitrary expressions. Because
we use de Bruĳn indices we do not have to worry about capture. Instead,
to compensate for input defined over an extension of the context we need
wMor+(−) to compensate.

Definition 2.2.12. For <, = ∈ N we define two function

(−)[−] : TyExpr(=) × CtxMor(<, =) → TyExpr(<)
(−)[−] : TmExpr(=) × CtxMor(<, =) → TmExpr(<)

by a mutual structural induction on TyExpr(=) and TmExpr(=). The variable
case is given by

x; [X] B ; [X]

30 2.2. Operations on raw syntax

while for any other clause, it follows this heuristic pattern:
If construction(8, �, D, . . .) comes from the clause

8 ∈ N � ∈ TyExpr(= + <�) D ∈ TmExpr(= + <D) . . .

construction(8, �, D, . . .) ∈ T-Expr(=)
,

then it is mapped to

construction(8, �[wMor+<� (X)], D[wMor+<D (X)], . . .),

where wMor+<(−) is the <-times iteration of wMor+(−). This is a raw
expression by

8 ∈ N �[wMor+<� (X)] ∈ TyExpr(< + <�)
D[wMor+<D (X)] ∈ TmExpr(< + <D) . . .

construction(8, �[wMor+<� (X)], D[wMor+<D (X)], . . .) ∈ T-Expr(<)

Again we present two examples to unpack the heuristic representation.
Suppose we wish to determine (Π��) [X] from the above. Recall that Π�� is
formed using the clause

� ∈ TyExpr(=) � ∈ TyExpr(= + 1)
Π�� ∈ TyExpr(=)

so <� = 0 and <� = 1. By induction hypothesis, we have constructed

�[wMor+0(X)] = �[X] ∈ TyExpr(<)
�[wMor+1(X)] = �[wMor+(X)] ∈ TyExpr(< + 1).

We thus find a raw expression

�[X] ∈ TyExpr(<) �[wMor+(X)] ∈ TyExpr(< + 1)
Π(�[X]) (�[wMor+(X)]) ∈ TyExpr(<)

which is assigned to (Π��) [X]. Taking the J-constructor again as a more
complicated example, we have

� ∈ TyExpr(=)
% ∈ TyExpr(= + 3) 3refl ∈ TmExpr(= + 1) D ∈ TmExpr(=)

J(�, %, 3refl, D, E, ?)�, %, 3refl, D ∈ TmExpr(=)

with <� = 0, <% = 3, <3refl = 1 and <D = 0. By induction hypothesis we have
constructions

�[wMor+0(X)] = �[X] ∈ TyExpr(<),

2. Dependent Type Theory 31

%[wMor+3(X)] ∈ TyExpr(< + 3),
3 [wMor+1(X)] = 3 [wMor+(X)] ∈ TyExpr(< + 1),
D[wMor+0(X)] = D[X] ∈ TmExpr(<),

from which we can conclude that

J(�[X], %[wMor+3(X)], 3refl [wMor+(X)], D[X])

is indeed an element of TyExpr(<).
Total substitution can be extended to the realm of context morphisms,

simply by substituting in all of their terms.

Definition 2.2.13. For <, =, ? ∈ N we define a function

(−)[−] : CtxMor(=, ?) × CtxMor(<, =) → CtxMor(<, ?)

by structural induction on CtxMor(=, ?):

![X] B !
(\, D) [X] B (\ [X], D[X]).

Asmentioned earlier, term substitution is a special case of total substitution.

Definition 2.2.14. For ?, = ∈ N, and C0, . . . , C?−1 ∈ TmExpr(=), we define a
function

(−)[C0, . . . , C?−1] : TyExpr(= + ?) → TyExpr(=)
�[C0, . . . , C?−1] B �[id=, C0, . . . , C?−1]

and

(−)[C0, . . . , C?−1] : TmExpr(= + ?) → TmExpr(=)
D[C0, . . . , C?−1] B D[id=, C0, . . . , C?−1] .

Remark 2.2.15. In the body of this thesis, we will only need the above for
at most three terms at a time. However, we will describe the general form
nonetheless.

Syntactic equalities
What follows is a list of lemmas about the interplay of the various operations
we have defined. They should not come as a surprise given the intuition behind
every operation. For proofs we refer to the formalization. The equalities
represented here are sometimes less general than possible, mostly because we

32 2.2. Operations on raw syntax

only need term substitution up to a maximum of three terms. Regardless,
generalization should not be difficult to formalize.

Weakening commutes with itself in the sense that if we first weaken at
position : and then at position : ′ ≤ : , the end result is the same as first
weakening at position : ′ and then at position : + 1.

Lemma 2.2.16. For <, = ∈ N and : ′ ≤ : < = we have for any � ∈ TyExpr(=),
D ∈ TmExpr(=) and X ∈ CtxMor(<, =)

wTy:′ (wTy: (�)) = wTy:+1(wTy:′ (�)),
wTm:′ (wTm: (D)) = wTm:+1(wTm:′ (D)),

wMor:′ (wMor: (X)) = wMor:+1(wMor:′ (X)). �

As a consequence, there is an interplay between Γ; and wCtx: (Γ, �).
Getting the type at position ;, and then weakening it at position : is the same
as first weakening the context at : and getting the type at the shifted position
of ;.

Lemma 2.2.17. For = ∈ N, : < =+1, ; < =, � ∈ TyExpr(=−:) andΓ ∈ Ctx(=)

wTy: (Γ;) = (wCtx: (Γ, �))wVar: (;) . �

Weakening commuteswith total substitution in the sense that if oneweakens
an expression in which one has first substituted a morphism, the end result is
the same as substituting the weakened morphism instead.

Lemma 2.2.18. For <, =, ? ∈ N, : < < and X ∈ CtxMor(<, =) we have for
any � ∈ TyExpr(=), D ∈ TmExpr(=) and \ ∈ CtxMor(=, ?)

wTy: (�[X]) = �[wMor: (X)],
wTm: (D[X]) = D[wMor: (X)],
wTm: (\ [X]) = \ [wMor: (X)] . �

If we substitute a morphism, in which we inserting a term at position : , into
an expression that was just weakened at that same position, the end result is the
same as simply substituting the original morphism into the original expression.

Lemma2.2.19. For<, =, ? ∈ N, : ≤ 3, X ∈ CtxMor(<, =) and C ∈ TmExpr(<)
we have for any � ∈ TyExpr(=), D ∈ TmExpr(=) and \ ∈ CtxMor(=, ?)

wTy: (�) [insertCtxMor: (X, C)] = �[X],
wTm: (D) [insertCtxMor: (X, C)] = D[X],
wMor: (\) [insertCtxMor: (X, C)] = \ [X] .

2. Dependent Type Theory 33

which specializes in the case of : = 0 to

wTy0(�) [X, C] = �[X],
wTm0(D) [X, C] = D[X],
wMor0(\) [X, C] = \ [X] . �

Substitution by the identity morphism has no effect.

Lemma 2.2.20. For =, ? ∈ N we have for any � ∈ TyExpr(=), D ∈ TmExpr(=)
and \ ∈ CtxMor(=, ?)

�[id=] ≡ �,
D[id=] ≡ D,
\ [id=] ≡ \.
id? [\] ≡ \. �

Total substitution is associative, i.e. substituting by two morphisms one by
one is the same as substituting once by the morphisms substituted into each
other.

Lemma 2.2.21. For <, =, ?, @, X ∈ CtxMor(@, =) and \ ∈ CtxMor(<, @) we
have for any � ∈ TyExpr(=), D ∈ TmExpr(=) and i ∈ CtxMor(=, ?)

�[X[\]] ≡ (�[X]) [\],
D[X[\]] ≡ (D[X]) [\],
i[X[\]] ≡ (i[X]) [\] . �

Using what we have so far we can show that weakening also commutes
with term substitution in the following sense

Lemma 2.2.22. For ? ≤ 3, = ∈ N, : < = and C0, . . . , C?−1 ∈ TmExpr(=) we
have for any � ∈ TyExpr(= + ?) and D ∈ TmExpr(= + ?)

wTy: (�[C0, . . . , C?−1]) ≡ (wTy:+? (�)) [wTm: (C0), . . . ,wTm: (C?−1)],
wTm: (D[C0, . . . , C?−1]) ≡ (wTm:+? (D)) [wTm: (C0), . . . ,wTm: (C?−1)] . �

Similarly, term substitution commutes with total substitution.

Lemma 2.2.23. For ? ≤ 3, <, = ∈ N, X ∈ CtxMor(<, =) and C0, . . . , C?−1 ∈
TmExpr(=) we have for any � ∈ TyExpr(= + ?) and D ∈ TmExpr(= + ?)

(�[C0, . . . , C?−1]) [X] ≡ (�[wMor+? (X)]) [C0 [X], . . . , C?−1 [X]),
(D[C0, . . . , C?−1]) [X] ≡ (D[wMor+? (X)]) [C0 [X], . . . , C?−1 [X]).

34 2.3. Derivations

Which specializes in the case of C0, . . . , C?−1 ∈ TmExpr(= + 1) and C ∈
TmExpr(=) to

(wTy? (�)) [C0, . . . , C?−1]) [C] ≡ �[C0 [C], . . . , C?−1 [C]],
(wTm? (D)) [C0, . . . , C?−1]) [C] ≡ D[C0 [C], . . . , C?−1 [C]] . �

Term substituting into an expression that has been repeatedly weakened at
0 has the expected effect.

Lemma 2.2.24. For ?, @ ∈ N with @ ≤ ? ≤ 3, = ∈ N and C0, . . . , C?−1 ∈
TmExpr(=) we have for any � ∈ TyExpr(= + (? − @)) and
D ∈ TmExpr(= + (? − @))

(wTy@0 (�)) [C0, . . . , C?−1] ≡ �[C0, . . . , C?−1−@],
(wTm@

0 (D)) [C0, . . . , C?−1] ≡ D[C0, . . . , C?−1−@] . �

Finally, we can switch from a weakening to a total substitution in the
following way

Lemma 2.2.25. For ? ≤ 3 and <, = ∈ N we have for any � ∈ TyExpr(= + ?),
D ∈ TmExpr(= + ?) and \ ∈ CtxMor(<, =)

wTy? (�) ≡ �[wMor+? (wMor0(id=))],
wTm? (D) ≡ D[wMor+? (wMor0(id=))],
wMor? (\) ≡ \ [wMor+? (wMor0(id=))] . �

Remark 2.2.26. The above might give the impression we could have defined
weakening in terms of substitution in the first place. However, recall that in
order to define wMor: (−) we relied on the definition of weakening.

2.3 Derivations
We are now in a position to talk about the kind of statements the system will
derive and the rules that will allow one to derive said statements.

Judgments
A general statement in dependent type theory is called a judgment. Judgments
over a given context come in four flavors.

2. Dependent Type Theory 35

Definition 2.3.1. The set Judgments(=) of raw judgments is the disjoint union
of elements from

• Ctx(=) × TyExpr(=) which we denote by Γ ` � and to be read as: � is a
well-formed type expression in context Γ,

• Ctx(=) × TyExpr(=) × TyExpr(=) which we denote by Γ ` � ≡ � and to
be read as: � and � are judgmentally equal type expression in context Γ,

• Ctx(=) × TmExpr(=) × TmExpr(=) which we denote by Γ ` D : � and
to be read as: D is a well-formed term expression of type � in context Γ,

• Ctx(=) × TmExpr(=) × TmExpr(=) × TyExpr(=) which we denote by
Γ ` D ≡ E : � and to be read as: D and E are judgmentally equal term
expressions of type � in context Γ.

Remark 2.3.2. One might wonder whether a judgment like Γ ` D : � should
also be understood to contain the information that � is well-formed type ex-
pression in context Γ. This is not the case from the get-go, but will be a property
of the system we set up.

Rules
A deduction rule has the form

J1 . . . J=

J

where the J8 and J are all judgments. The J8 are called hypotheses or premises
and J the conclusion. Given a set of deduction rules, one defines deduction
trees in the standard way. A judgment J is said to be derivable if there exists a
deduction tree with conclusion J. We will often conflate a judgment with the
question whether it is derivable.

The rules for a Martin-Löf’s style type theory come in two flavors. The first
being the structural rules, which deals with the core properties of the system
and ensure that it is well-behaved and the second being the logical rules which
deal with the additional types one has added to the system. The logical rules
of a given type usually include:

• formation rules, which indicate when the given type constructor is well-
formed.

• introduction rules, which indicatewhich canonical terms arewell-formed
of this type.

36 2.3. Derivations

• elimination rules, which indicate how to deal with arbitrary well-formed
terms of this type.

• computation rules, which indicate how the elimination rules acts on
canonical terms.

We will indicate rules of this kind by -FORM, -INTRO, -ELIM and -COMP.
One can also add some additional logical rules. Examples are congruence rules
which state that types/terms constructors preserve judgmental equality and [
rules. We abbreviate these by -CONG and -ETA. More involved examples
from the literature which we have not included in our system, are for instance
function extensionality and the univalence axiom.

We will deliberately present all the rules of the system we consider and
write down all the premises of a given rule, as it is not uncommon in the
literature to leave some of these implicit.

Definition 2.3.3. The deduction rules of MLTT consist of

structural rules:
Γ ` �

Γ ` � ≡ �
Ty-REFL

Γ ` � ≡ �
Γ ` � ≡ �

Ty-SYMM

Γ ` � ≡ � Γ ` � Γ ` � ≡ �
Γ ` � ≡ �

Ty-TRANS

Γ ` D : �
Γ ` D ≡ D : �

Tm-REFL
Γ ` D ≡ E : �
Γ ` E ≡ D : �

Tm-SYMM

Γ ` D ≡ E : � Γ ` E : � Γ ` E ≡ F : �
Γ ` D ≡ F : �

Tm-TRANS

Γ ` D : � Γ ` � Γ ` � ≡ �
Γ ` D : �

Conv

Γ ` D ≡ E : � Γ ` � Γ ` � ≡ �
Γ ` D ≡ E : �

ConvEq

Γ ` Γ;
Γ ` x; : Γ;

VAR

Logical rules:

Γ ` 0
0 -FORM

Γ, 0 ` % Γ ` D : 0
Γ ` empty_elim(%, D) : %[D]

0 -ELIM

Γ ` 1
1 -FORM

Γ ` ★ : 1
★ -INTRO

Γ, 1 ` % Γ ` 3★ : %[★] Γ ` D : 1
Γ ` unit_elim(%, 3★, D) : %[D]

1 -ELIM

Γ, 1 ` % Γ ` 3★ : %[★]
Γ ` unit_elim(%, 3★, ★) ≡ 3★ : %[★]

★ -COMP

Γ ` N
N -FORM

Γ ` zero : N
zero -INTRO

Γ ` D : N
Γ ` suc(D) : N

suc -INTRO

Γ,N ` % Γ ` 3zero : %[zero]
Γ,N, % ` 3suc : (wTy1(wTy1(%))) [suc(x1)] Γ ` D : N

Γ ` ind(%, 3zero, 3suc, D) : %[D]
ind -ELIM

Γ,N ` % Γ ` 3zero : %[zero]
Γ,N, % ` 3suc : (wTy1(wTy1(%))) [suc(x1)]
Γ ` ind(%, 3zero, 3suc, zero) ≡ 3zero : %[zero]

zero -COMP

Γ,N ` % Γ ` 3zero : %[zero]
Γ,N, % ` 3suc : (wTy1(wTy1(%))) [suc(x1)] Γ ` D : N

Γ ` ind(%, 3zero, 3suc, suc(D)) ≡ 3suc [D, ind(%, 3zero, 3suc, D)] : %[suc(D)]
suc -COMP

Γ ` � Γ ` �
Γ ` � +++ �

+++ -FORM
Γ ` � Γ ` � Γ ` 0 : �
Γ ` inl(�, �, 0) : � +++ �

inl -INTRO

Γ ` � Γ ` � Γ ` 1 : �
Γ ` inr(�, �, 1) : � +++ �

inr -INTRO

Γ ` � Γ ` � Γ, � +++ � ` %
Γ, � ` 3inl : (wTy1(%)) [inl(wTy0(�),wTy0(�), x0)]
Γ, � ` 3inr : (wTy1(%)) [inr(wTy0(�),wTy0(�), x0)]

Γ ` D : � +++ �
Γ ` match(�, �, %, 3inl, 3inr, D) : %[D]

match -ELIM

Γ ` � Γ ` � Γ, � +++ � ` %
Γ, � ` 3inl : (wTy1(%)) [inl(wTy0(�),wTy0(�), x0)]
Γ, � ` 3inr : (wTy1(%)) [inr(wTy0(�),wTy0(�), x0)]

Γ ` 0 : �
Γ ` match(�, �, %, 3inl, 3inr, inl(�, �, 0)) ≡ 3inl [0] : %[inl(�, �, 0)]

inl -COMP

2. Dependent Type Theory 37

Γ ` � Γ ` � Γ, � +++ � ` %
Γ, � ` 3inl : (wTy1(%)) [inl(wTy0(�),wTy0(�), x0)]
Γ, � ` 3inr : (wTy1(%)) [inr(wTy0(�),wTy0(�), x0)]

Γ ` 1 : �
Γ ` match(�, �, %, 3inl, 3inr, inr(�, �, 1)) ≡ 3inr [1] : %[inr(�, �, 1)]

inr -COMP

Γ ` � Γ, � ` �
Γ ` Π��

Π -FORM

Γ ` � Γ, � ` � Γ, � ` D : �
Γ ` _(�, �, D) : Π��

_ -INTRO

Γ ` � Γ, � ` � Γ ` 5 : Π�� Γ ` 0 : �
Γ ` app(�, �, 5 , 0) : �[0]

ap -ELIM

Γ ` � Γ, � ` � Γ, � ` D : � Γ ` 0 : �
Γ ` app(�, �, _(�, �, D), 0) ≡ D[0] : �[0]

_ -COMP

Γ ` � Γ, � ` �
Γ ` Σ��

Σ -FORM

Γ ` � Γ, � ` � Γ ` 0 : � Γ ` 1 : �[0]
Γ ` pair(�, �, 0, 1) : Σ��

pair -INTRO

Γ ` � Γ, � ` � Γ ` D : Σ��
Γ ` pr1(�, �, D) : �

pr1 -ELIM

Γ ` � Γ, � ` � Γ ` D : Σ��
Γ ` pr2(�, �, D) : �[pr1(�, �, D)]

pr2 -ELIM

Γ ` � Γ, � ` � Γ ` 0 : � Γ ` 1 : �[0]
Γ ` pr1(�, �, pair(�, �, 0, 1)) ≡ 0 : �

pr1 -COMP

Γ ` � Γ, � ` � Γ ` 0 : � Γ ` 1 : �[0]
Γ ` pr2(�, �, pair(�, �, 0, 1)) ≡ 1 : �[0]

pr2 -COMP

Γ ` � Γ ` D : � Γ ` E : �
Γ ` Id�(D, E)

Id -FORM

Γ ` � Γ ` 0 : �
Γ ` refl(�, 0) : Id�(0, 0)

refl -INTRO

Γ ` � Γ, �,wTy0(�), IdwTy0 (wTy0 (�)) (x1, x0) ` %
Γ, � ` 3refl : (wTy3(%)) [x0, x0, refl(wTy0(�), x0)]
Γ ` D : � Γ ` E : � Γ ` ? : Id�(D, E)

Γ ` J(�, %, 3refl, D, E, ?) : %[D, E, ?]
J -ELIM

Γ ` � Γ, �,wTy0(�), IdwTy0 (wTy0 (�)) (x1, x0) ` %
Γ, � ` 3refl : (wTy3(%)) [x0, x0, refl(wTy0(�), x0)] Γ ` 0 : �
Γ ` J(�, %, 3refl, 0, 0, refl(�, 0)) ≡ 3refl [0] : %[0, 0, refl(�, 0)]

refl -COMP

Γ ` U8
U8 -FORM

Γ ` 08 : U8
08 -INTRO

Γ ` 18 : U8
18 -INTRO

Γ ` n8 : U8
n8 -INTRO

Γ ` u8 : U8+1
u8 -INTRO

Γ ` 0 : U8 Γ ` 1 : U8
Γ ` 0 +++ 1 : U8

+++ -INTRO

Γ ` 0 : U8 Γ,El8 (0) ` 1 : U8
Γ ` c8 (0, 1) : U8

c8 -INTRO

Γ ` 0 : U8 Γ,El8 (0) ` 1 : U8
Γ ` f8 (0, 1) : U8

f8 -INTRO

Γ ` 0 : U8 Γ ` D : El8 (0) Γ ` E : El8 (0)
Γ ` id8 (0, D, E) : U8

id8 -INTRO

Γ ` E : U8
Γ ` El8 (E)

El8 -ELIM
Γ ` El8 (08) ≡ 0

08 -COMP

Γ ` El8 (18) ≡ 1
18 -COMP

Γ ` El8 (n8) ≡ N
n8 -COMP

Γ ` El8 (u8) ≡ U8
u8 -COMP

Γ ` 0 : U8 Γ ` 1 : U8
Γ ` El8 (0 +8 1) ≡ El8 (0) +++ El8 (1)

+8 -COMP

Γ ` 0 : U8 Γ,El8 (0) ` 1 : U8
Γ ` El8 (c8 (0, 1)) ≡ ΠEl8 (0)El8 (1)

c8 -COMP

Γ ` 0 : U8 Γ,El8 (0) ` 1 : U8
Γ ` El8 (f8 (0, 1)) ≡ ΣEl8 (0)El8 (1)

f8 -COMP

Γ ` 0 : U8 Γ ` D : El8 (0) Γ ` E : El8 (0)
Γ ` El8 (id8 (0, D, E)) ≡ IdEl8 (0) (D, E)

id8 -COMP

[rules:
Γ ` � Γ ` � Γ ` D : � +++ �

Γ ` D ≡ match(�, �,wTy0(� +++ �), inl(wTy0(�),wTy0(�), x0),
inr(wTy: (�),wTy: (�), x0), D) : � +++ �

+++ -ETA

Γ ` � Γ, � ` � Γ ` 5 : Π��
Γ ` 5 ≡ _(�, �, app(wTy0(�),wTy1(�),wTm0(5), x0)) : Π��

Π -ETA

Γ ` � Γ, � ` � Γ ` D : Σ��
Γ ` D ≡ pair(�, �, pr1(�, �, D), pr2(�, �, D)) : Σ��

Σ -ETA

Congruence rules:

Γ ` 08 ≡ 08
08 -CONG

Γ ` 18 ≡ 18
18 -CONG

Γ ` N ≡ N
N -CONG

Γ ` � ≡ �′ Γ ` � ≡ �′

Γ ` � +++ � ≡ �′ +++ �′
+++ -CONG

Γ ` � ≡ �′ Γ ` � Γ, � ` � ≡ �′

Γ ` Π�� ≡ Π�′�′
Π -CONG

Γ ` � ≡ �′ Γ ` � Γ, � ` � ≡ �′

Γ ` Σ�� ≡ Σ�′�′
Σ -CONG

Γ ` � ≡ �′ Γ ` D ≡ D′ : � Γ ` E ≡ E′ : �
Γ ` Id�(D, E) ≡ Id�′ (D′, E′)

Id -CONG

Γ, 0 ` % ≡ %′ Γ ` D ≡ D′ : 0
Γ ` empty_elim(%, D) ≡ empty_elim(%′, D′) : %[D]

empty_elim -CONG

Γ ` ★ ≡ ★ : N
★ -CONG

Γ, 1 ` % ≡ %′ Γ ` 3★ ≡ 3 ′★ : %[★] Γ ` D ≡ D′ : 1
Γ ` unit_elim(%, 3★, D) ≡ unit_elim(%′, 3 ′★, D′) : %[D]

unit_elim -CONG

Γ ` zero ≡ zero : N
zero -CONG

Γ ` D ≡ D′ : N
Γ ` suc(D) ≡ suc(D′) : N

suc -CONG

Γ,N ` % ≡ %′ Γ ` 3zero ≡ 3 ′zero : %[zero]
Γ,N ` % Γ,N, % ` 3suc ≡ 3 ′suc : (wTy1(wTy1(%))) [suc(x1)]

Γ ` D ≡ D′ : N
Γ ` ind(%, 3zero, 3suc, D) ≡ ind(%′, 3 ′zero, 3

′
suc, D

′) : %[D]
ind -CONG

Γ ` � ≡ �′ Γ ` � ≡ �′ Γ ` 0 ≡ 0′ : �
Γ ` inl(�, �, 0) ≡ inl(�′, �′, 0′) : � +++ �

inl -CONG

Γ ` � ≡ �′ Γ ` � ≡ �′ Γ ` 1 ≡ 1′ : �
Γ ` inr(�, �, 1) ≡ inr(�′, �′, 1′) : � +++ �

inr -CONG

Γ ` � ≡ �′
Γ ` � ≡ �′ Γ ` � Γ ` � Γ, � +++ � ` % ≡ %′
Γ, � ` 3inl ≡ 3 ′inl : (wTy1(%)) [inl(�, �, 0)�, �, x0]
Γ, � ` 3inr ≡ 3 ′inr : (wTy1(%)) [inr(�, �, 1)�, �, x0]

Γ ` D ≡ D′ : � +++ �
Γ ` match(�, �, %, 3inl, 3inr, D) ≡ match(�′, �′, %′, 3 ′inl, 3

′
inr, D

′) : %[D]
match -CONG

Γ ` � ≡ �′ Γ ` � Γ, � ` � ≡ �′ Γ, � ` D ≡ D′ : �
Γ ` _(�, �, D) ≡ _(�′, �′, D′) : Π��

_ -CONG

Γ ` � ≡ �′ Γ ` �
Γ, � ` � ≡ �′ Γ ` 5 ≡ 5 ′ : Π�� Γ ` 0 ≡ 0′ : �

Γ ` app(�, �, 5 , 0) ≡ app(�′, �′, 5 ′, 0′) : �[0]
ap -CONG

38 2.3. Derivations

Γ ` � ≡ �′ Γ ` �
Γ, � ` � ≡ �′ Γ ` 0 ≡ 0′ : � Γ ` 1 ≡ 1′ : �[0]

Γ ` pair(�, �, 0, 1) ≡ pair(�′, �′, 0′, 1′) : Σ��
pair -CONG

Γ ` � ≡ �′ Γ ` � Γ, � ` � ≡ �′ Γ ` D ≡ D′ : Σ��
Γ ` pr1(�, �, D) ≡ pr1(�′, �′, D′) : �

pr1 -CONG

Γ ` � ≡ �′ Γ ` � Γ, � ` � ≡ �′ Γ ` D ≡ D′ : Σ��
Γ ` pr2(�, �, D) ≡ pr2(�′, �′, D′) : �[pr1(�, �, D)]

pr2 -CONG

Γ ` � ≡ �′ Γ ` 0 ≡ 0′

Γ ` refl(�, 0) ≡ refl(�′, 0′) : Id�(0, 0)
refl -CONG

Γ ` � ≡ �′
Γ ` � Γ, �,wTy0(�), IdwTy0 (wTy0 (�)) (x1, x0) ` % ≡ %′
Γ, � ` 3refl ≡ 3 ′refl : (wTy3(%)) [x0, x0, refl(wTy0(�), x0)]
Γ ` D ≡ D′ : � Γ ` E ≡ E′ : � Γ ` ? ≡ ?′ : Id�(D, E)
Γ ` J(�, %, 3refl, D, E, ?) ≡ J(�′, %′, 3 ′refl, D

′, E′, ?′) : %[D, E, ?]
J -CONG

Γ ` 0 ≡ 0′ : U8 Γ ` 1 ≡ 1′ : U8
Γ ` 0 +8 1 ≡ 0′ +8 1′ : U8

+8 -CONG

Γ ` 0 ≡ 0′ : U8 Γ ` 0 : U8 Γ,El8 (0) ` 1 ≡ 1′ : U8
Γ ` c8 (0, 1) ≡ c8 (0′, 1′) : U8

c8 -CONG

Γ ` 0 ≡ 0′ : U8 Γ ` 0 : U8 Γ,El8 (0) ` 1 ≡ 1′ : U8
Γ ` f8 (0, 1) ≡ f8 (0′, 1′) : U8

f8 -CONG

Γ ` 0 ≡ 0′U8 Γ ` D ≡ D′ : El8 (0) Γ ` E ≡ E′ : El8 (0)
Γ ` id8 (0, D, E) ≡ id8 (0′, D′, E′) : U8

id8 -CONG

Γ ` E ≡ E′ : U8
Γ ` El8 (E) ≡ El8 (E′)

El8 -CONG

Remark 2.3.4.
• In the literature rules are often representedwith named variables, tomake
more readable. As an example, consider the following presentation of
J -ELIM in the style of the HoTT book [UFP13, Appendix A.2]:

Γ, G : �, H : �, ? : Id�(G, H) ` %
Γ, I : � ` 2 : %[I, I, refl(I, �)/G, H, ?]

Γ ` D : � Γ ` E : � Γ ` ?′ : Id�(D, E)
Γ ` J(G.H.?.%, I.2, 0, 1, ?′) : %[D, E, ?′/G, H, ?]

J -ELIM
.

Although aesthetically pleasing, the formal treatment of variable binding
is usually unspecified and if specified, is usually done by de Bruĳn
indices.

• Another big difference between our presentation of the rules compared to
standard presentations, is that we have excluded context judgments so far
(we will introduce this only later). For example consider the following
presentation of the N -FORM

` Γ
Γ ` N

N -FORM.

The decision to not include these additional premises is somewhat novel.
We claim that this presentation results in the same system for well-formed
contexts as the more standard presentation. Properly showing this will
not be treated in this thesis and is left for future investigation.

• We have included all premises that introduce metavariables. For instance
the premise Γ ` � in Π -FORM

Γ ` � Γ, � ` �
Γ ` Π��

Π -FORM.

These kinds of premises are often left out in the literature.

2. Dependent Type Theory 39

• We have decided to include only some of the congruence rules. Other
variants like

Γ ` � ≡ �′
Γ ` �′ Γ, �′ ` � ≡ �′ Γ, � ` D ≡ D′ : �

Γ ` _(�, �, D) ≡ _(�′, �′, D′) : Π�′�′
_ -CONG′

are admissible, i.e. if the premises are derivable, so is the conclusion.
We extend the notion of derivability to contexts and context morphisms.

The judgments for these consist of:
• Ctx(=) which we denote by ` Γ and to be read as: Γ is a well-formed
context,

• Ctx(=) × Ctx(=) which we denote by ` Γ ≡ Γ′ and to be read as: Γ and
Γ′ are judgmentally equal contexts,

• Ctx(<) × CtxMor(<, =) × Ctx(=) which we denote by Δ ` X : Γ and to
be read as: X is a well-formed context morphism from Δ to Γ,

• Ctx(<) × CtxMor(<, =) × CtxMor(<, =) × Ctx(=) which we denote by
Δ ` X ≡ X′ : Γ and to be read as: X and X′ are judgmentally equal context
morphisms from Δ to Γ.

As mentioned in Remark 2.3.4 it is not uncommon in the literature to
include these kinds of judgments already from the beginning and use them as
premises in some of the structural/logical rules of the system. In our setup we
avoid these premises and as such we have decided to include them only now.
Definition 2.3.5. The deduction rules for contexts and context morphisms are
given by

` �
` Γ Γ ` �
` Γ, �

` � ≡ �
` Γ ≡ Γ′ Γ ` � ≡ �′

` (Γ, �) ≡ (Γ′, �′)

Δ ` ! : �
Δ ` X : Γ Δ ` D : �[X]

Δ ` (X, D) : Γ, �

Γ ` ! ≡ ! : �
Δ ` X ≡ X′ : Γ Δ ` D ≡ D′ : �[X]

Δ ` (X, D) ≡ (X′, D′) : Γ, �
Remark 2.3.6. One might have expected some additional premises, but they
turn out to be redundant. For the sake of simplicity we have not included them.

40 2.3. Derivations

Admissible rules
As mentioned previously, there are a lot of additional rules one might want to
include in the system described above. However, this turns out to be unneces-
sary, as they are admissible. We will list a number of them here. The benefit
of not explicitly including them in the system, is that they would complicate
situations in which we want to use induction on a derivation.

Admissible rules are often presented in the same way as ordinary deduction
rules. However, they should be read differently: if the judgments in its premises
are derivable, then so is its conclusion. The proofs of these are mostly known
and standard, and thus we refer to our formalization for the details. Alterna-
tively, see [Luo94, Chapter 3] for similar results for a smaller system.

We start with two very well known admissible rules that deal with substi-
tution and weakening.

Lemma 2.3.7. If Γ ` J, then wCtx: (Γ, �) ` w: (J), i.e.

Γ ` �
wCtx: (Γ, �) ` wTy: (�)

Γ ` D : �
wCtx: (Γ, �) ` wTm: (D) : wTy: (�)

Γ ` � ≡ �′

wCtx: (Γ, �) ` wTy: (�) ≡ wTy: (�′)

Γ ` D ≡ D′ : �
wCtx: (Γ, �) ` wTm: (D) ≡ wTm: (D′) : wTy: (�)

.

Lemma 2.3.8. If Γ ` J and Δ ` X : Γ, then Γ ` J[X], i.e.

Γ ` � Δ ` X : Γ
Δ ` �[X]

Γ ` D : � Δ ` X : Γ
Δ ` D[X] : �[X]

Γ ` � ≡ �′ Δ ` X : Γ
Δ ` �[X] ≡ �′[X]

Γ ` D ≡ D′ : � Δ ` X : Γ
Δ ` D[X] ≡ D′[X] : �[X]

Additionally, we have

Γ ` � Δ ` X : Γ Δ ` X ≡ X′ : Γ
Δ ` �[X] ≡ �[X′]

Γ ` D : � Δ ` X : Γ Δ ` X ≡ X′ : Γ
Δ ` D[X] ≡ D[X′] : �[X]

.

2. Dependent Type Theory 41

Proof. The proof of these two lemmas is by mutual induction on the appro-
priate judgment in the premise of each rule and includes the following helper
rules within the induction. The first couple dealing with the weakening of
morphisms:

Δ ` X : Γ
wCtx: (Δ, �) ` wMor: (X) : Γ

Δ ` X ≡ X′ : Γ
wCtx: (Δ, �) ` wMor: (X) ≡ wMor: (X′) : Γ

Δ ` X : Γ Δ ` �[X]
Δ, �[X] ` wMor+(X) : Γ, �

Δ ` X : Γ Δ ` X ≡ X′ : Γ Γ ` �
Δ, �[X] ` wMor+(X) ≡ wMor+(X′) : Γ, �

which is shown by structural induction on X. And finally, two dealing with
cases for Γ;:

Δ ` X : Γ
Δ ` x; [X] : Γ; [X]

Δ ` X ≡ X′ : Γ
Δ ` x; [X] ≡ x; [X′] : Γ; [X]

proven by structural induction on ;. All of these helper rules as well as the
main results are straightforward. �

We can combine the previous rules dealing with judgmental equality of
substitution:

Corollary 2.3.9. The following rules are admissible:

Γ ` � ≡ �′ Δ ` X : Γ Δ ` X ≡ X′ : Γ
Δ ` �[X] ≡ �′[X′]

Γ ` D ≡ D′ : � Δ ` X : Γ Δ ` X ≡ X′ : Γ
Δ ` D[X] ≡ D′[X′] : �[X]

Proof. Using the previous lemma and Tm-TRANS and Ty-TRANS. �

Next we have the fact that the identity morphism id= is a well-formed
endomorphism between any well-formed context of length =.

Lemma 2.3.10. If ` Γ, then Γ ` id : Γ

Proof. By structural induction on Γ. �

This allows us to conclude that term substitution is also admissible.

42 2.3. Derivations

Corollary 2.3.11. For ? ≤ 3, the following rule is admissible:

Γ, �0, . . . , �?−1 ` J
Γ ` C0 : �0 . . . Γ ` C?−1 : �?−1 [C0, . . . , C?−2]

Γ ` J[C0, . . . , C?−1]

to be read similarly as in Lemma 2.3.8.

Proof. By combining Lemma 2.3.8 and Lemma 2.3.10. �

From a well-formed context, we can derive its ;-th type.

Lemma 2.3.12. If ` Γ, then Γ ` Γ;.

Proof. By structural induction on ; and Γ using the rules for weakening. The
premise ` Γ is needed in the base case, as one can conclude Γ ` � from ` Γ, �
and then apply weakening. �

Next, wewant to have conversion rules which state that derivable judgments
are stable under judgmentally equal contexts. The asymmetry is due to the
asymmetric choice in the clause for ` Γ ≡ Δ.

Lemma 2.3.13. The following rule is admissible:

Δ ` J ` Γ ≡ Δ ` Γ
Γ ` J

.

Proof. One needs an additional helper rule for the variable case

` Γ ≡ Δ
Γ ` Γ; ≡ Δ;

,

which is proven by a straightforward induction on ;. The lemma is then proven
by mutual induction on the judgment. The only case where the asymmetry
pops up is in the variable case. �

We are now in a position to prove a number of rules we call prepositions.
These are of the form discussed in Remark 2.3.2.

We prove this simultaneouslywith the fact that judgmental equality between
contexts and context morphisms is an equivalence relation.

2. Dependent Type Theory 43

Lemma 2.3.14. Judgmental equality between contexts and context morphisms
is an equivalence relation, i.e.

` Γ
` Γ ≡ Γ

` Γ ≡ Δ
` Δ ≡ Γ

` Γ ≡ Δ ` Δ ≡ Θ
` Γ ≡ Θ

Δ ` X : Γ
Δ ` X ≡ X : Γ

` Δ ` Γ Δ ` X ≡ \ : Γ
Δ ` \ ≡ X : Γ

` Δ ` Γ Δ ` X ≡ \ : Γ Δ ` \ ≡ i : Γ
Δ ` X ≡ i : Γ

Lemma 2.3.15. The following presuppositions are admissible:

` Γ Γ ` � ≡ �
Γ ` �

` Γ Γ ` � ≡ �
Γ ` �

` Γ Γ ` D ≡ E : �
Γ ` D : �

` Γ Γ ` D ≡ E : �
Γ ` E : �

` Γ Γ ` D : �
Γ ` �

` Γ ≡ Δ
` Γ

` Γ ≡ Δ
` Δ

` Γ ` Δ Δ ` X ≡ \ : Γ
Δ ` X : Γ

` Γ ` Δ Δ ` X ≡ \ : Γ
Δ ` \ : Γ

Proof. The proof of these two lemmas is by a mutual induction. The reflexivity
case for definitional equality of contexts and context morphism are dealt with
using Ty-REFL andTm-REFL. The remaining cases about contexts and context
morphisms follow readily.

The presuppositions are all straightforward. Be aware that in rules like
ap -ELIM, the left and right hand side of the judgmental equality are signifi-
cantly different. �

We now give the admissible rules for substitutions and conversion extended
to context morphisms. We could have already derived some of these previously,
but they have not been necessary so far. We therefore collect them here.

44 2.3. Derivations

Lemma 2.3.16. The follow rules are admissible:

Θ ` \ : Γ Δ ` X : Θ
Δ ` \ [X] : Γ

Θ ` \ ≡ \ ′ : Γ Δ ` X : Θ
Δ ` \ [X] ≡ \ ′[X] : Γ

Θ ` \ : Γ Δ ` X : Θ Δ ` X ≡ X′ : Θ
Δ ` \ [X] ≡ \ [X′] : Γ

Θ ` \ : Γ Θ ` \ ≡ \ ′ : Γ ` Θ Δ ` X : Θ Δ ` X ≡ X′ : Θ
Δ ` \ [X] ≡ \ ′[X′] : Γ

Δ ` X : Γ ` Δ ≡ Δ′ ` Γ ≡ Γ′

Δ′ ` X : Γ′

Δ ` X ≡ X′ : Γ ` Δ ≡ Δ′ ` Γ ≡ Γ′

Δ′ ` X ≡ X′ : Γ′

Proof. By structural induction on the appropriate judgment. The need for the
premise ` Θ can be seen as a similar requirement to a premise in Ty-TRANS
and Tm-TRANS. �

Finally, given the extended list of admissible rules at our disposal, we can
alter the premises from some of the rules we have so far. This includes core
rules to the systems and admissible ones. This presentation turns out to be
more convenient for the development later on.

Lemma 2.3.17. The following rules are admissible:

` Γ ` Δ Γ ` � Δ ` X ≡ X′ : Γ
Δ ` �[X] ≡ �[X′]

` Γ ` Δ Γ ` � ≡ �′ Δ ` X ≡ X′ : Γ
Δ ` �[X] ≡ �′[X′]

` Γ ` Δ Γ ` D : � Δ ` X ≡ X′ : Γ
Δ ` D[X] ≡ D[X′] : �[X]

` Γ ` Δ Γ ` D ≡ D′ : � Δ ` X ≡ X′ : Γ
Δ ` D[X] ≡ D′[X′] : �[X]

2. Dependent Type Theory 45

` Θ ` Δ Θ ` \ : Γ Δ ` X ≡ X′ : Θ
Δ ` \ [X] ≡ \ [X′] : Γ

` Θ ` Δ Θ ` \ ≡ \ ′ : Γ Δ ` X ≡ X′ : Θ
Δ ` \ [X] ≡ \ ′[X′] : Γ

` Δ ` Γ Γ ` � Δ ` X ≡ X′ : Γ
Δ, �[X] ` wMor+(X) ≡ wMor+(X′) : Γ, �

Δ ` � ` Γ ≡ Δ
Γ ` �

Δ ` � ≡ � ` Γ ≡ Δ
Γ ` � ≡ �

Δ ` D : � ` Γ ≡ Δ
Γ ` D : �

Δ ` D ≡ E : � ` Γ ≡ Δ
Γ ` D ≡ E : �

Γ ` � ≡ � Γ ` � ≡ �
Γ ` � ≡ �

Γ ` D ≡ E : � Γ ` E ≡ F : �
Γ ` D ≡ F : �

�

We end by noting there might be more admissible rules in our system, but
we have presented all required for our results.

46 2.3. Derivations

47

3. Contextual Categories

In the previous chapter we have seen the syntactic world of dependent type
theory. In this chapter we will discuss a semantic approach, which in our case
will be the one of contextual categories. One might not be surprised that the
semantics will lie in a categorical setting; we have already encountered a notion
of ‘context morphism’ in the previous chapter which hinted in that direction.
Indeed, we will start by establishing that we can form a category out of syntax.

We would like to emphasize that this is not the only (categorical) semantics
for dependent type theory that have been proposed so far. However, it will be
the one with respect to which we will prove the initiality conjecture.

3.1 Definition of contextual categories
We start by the observation that the syntax forms a category, which is given
the name of syntactic category or term model in the literature. We need to
introduce the following definitions.

Definition 3.1.1. A derivable context is a context Γ ∈ Ctx(=) such that ` Γ
holds. We usually denote a derivable context by its underlying context Γ. We
define a relation on derivable contexts by

Γ ∼Ctx Γ
′ iff ` Γ ≡ Γ.

This is an equivalence relations by Lemma 2.3.14.
We define a derivable morphism to be a triple (X,Δ, Γ) such that Δ ∈

Ctx(<) and Γ ∈ Ctx(=) are derivable contexts and X ∈ CtxMor(<, =) such
that Δ ` X : Γ holds. We usually denote a derivable morphism (X,Δ, Γ) by its
underlying context morphism X and write dom(X) B Δ and cod(X) B Γ for
the projections. We define a relation on derivable morphisms by

X ∼CtxMor X
′ iff dom(X) ∼Ctx dom(X′),

cod(X) ∼Ctx cod(X′) and
dom(X) ` X ≡ X′ : cod(X).

Note that inclusions like dom(X′) ` X ≡ X′ : cod(X′) into this relation would be
redundant due to Lemma 2.3.16. This relation is an equivalence relation again
by Lemma 2.3.14.

48 3.1. Definition of contextual categories

Remark 3.1.2. Observe that our convention for writing X instead of the full
data (X,Δ, Γ) means it does not in general hold that X = X, as X can represent
two different derivable morphisms.

We will omit the subscripts in both relations if no confusion can arise. We
are now in a position to properly introduce the underlying category of the term
model.

Definition 3.1.3. The term model C(MLTT) is the category defined by

• objects: Derivable contexts modulo ∼Ctx. Note that all members of a
given equivalence class will have the same length.

• morphisms: Derivable morphisms modulo ∼CtxMor. For an morphism
[X], its source is [dom(X)] and target is [cod(X)], which we write

[X] : [dom(X)] → [cod(X)] .

Note that the source and target of a morphism are well-defined by the
definition of ∼CtxMor.

• composition: Given two morphisms [\] and [X] such that [cod(X)] =
[dom(\)], we define their composition

[\] ◦ [X] B [\ [X]] : [dom(X)] → [cod(\)]

by Lemma 2.3.16. This is well-defined by the same lemma. Moreover,
this operation is associative by Lemma 2.2.21.

• identity morphism: Given an object [Γ] with Γ ∈ Ctx(=), we define the
identity on [Γ] by

id[Γ] B [id=] : [Γ] → [Γ]

using Lemma 2.3.10. This is well-defined by noting that the expression
id= only depends on the length of the context Γ.
Moreover, for any morphism [X], we have

id[cod(X)] ◦ [X] = [id[X]] = [X]
[X] ◦ id[dom(X)] = [X[id]] = [X]

by Lemma 2.2.20.

3. Contextual Categories 49

Remark 3.1.4. Be aware that writing [X] instead of [(X, dom(X), cod(X))]
makes it so in general we cannot conclude [X] = [X]. Good examples of this
phenomenon are the morphisms [id=].

In particular, in the last part of the definition above we should have also
shown, among other things, dom(id[X]) ∼ dom(X). In this case dom(id[X]) =
dom(X) so it follows immediately.

In general, we will not show the equivalence of the underlying contexts
when showing two morphisms are equal, as it is often straightforward. For
readers that are nonetheless interested, we refer to the formalization.

To investigate the properties that characterize the term model, we introduce
the class of categories called contextual categories. This class of categories
has been designed precisely to abstract away the fundamental properties of
C(MLTT), and was introduced by Cartmell [Car86, Chapter 14] and later
studied by Streicher [Str91]. They have also been studied by Voevodsky as
C-systems in a series of papers, e.g. [Voe14] [Voe15] and [Voe16].

Definition 3.1.5. A contextual category is a (strict) category C together with
the following additional structure:

• a grading of the objects of C as ObC =
∐
=∈NObC(=) such that there is

a unique (on the nose) object pt ∈ ObC(0), which is a terminal object.
We write ptmor- for the unique morphism - → pt. For an object
- ∈ ObC(=), we refer to = as the length of - .

• for every object - ∈ ObC(= + 1), an object ft - ∈ ObC(=) (the father of
-) and a morphism p- : - → ft - which we denote by _ in diagrams,

• for every object - ∈ ObC(= + 1) and every morphism 5 : . → ft -
with . ∈ ObC(<), an object 5 ∗- ∈ ObC(< + 1) such that ft(5 ∗-) = .
and a morphism q(5 , -) : 5 ∗- → - , such that the following diagram
commutes

5 ∗- -

. ft -

q(5 ,-)

5

and such that

(idft-)∗- = - q(idft- , -) = id-
(6 ◦ 5)∗- = 5 ∗(6∗-) q(6 ◦ 5 , -) = q(6, -) ◦ q(5 , 6∗-).

50 3.1. Definition of contextual categories

• for every morphism 5 : . → - where - ∈ ObC(= + 1), a morphism
s 5 : . → (p- ◦ 5)∗- such that the following diagram commutes:

.

(p- ◦ 5)∗- -

. - ft -
id.

s 5

5

q(p- ◦ 5 ,-)

5

and such that if - = 6∗* (for some object * and some morphism
6 : ft - → ft*), then

s 5 = sq(6,*)◦ 5 .

Note that q(6,*) ◦ 5 : . → * and that

(p* ◦ q(6,*) ◦ 5)∗* = (6 ◦ p6∗* ◦ 5)∗*
= (p6∗* ◦ 5)∗(6∗*)
= (p- ◦ 5)∗-,

therefore s 5 and sq(6,*)◦ 5 have the same domain and codomain.

Remark 3.1.6.

• We emphasize that we are dealing with a strict category and we thus
consider the equations between the various operations up to equality, not
merely isomorphism.

• The objects of a contextual category, together with the p(−) -morphisms
form a directed rooted tree with root pt. This explains the origin of the
name ‘father’.

• An important example of a contextual category is the category Fam of
families of sets. This was already considered in [Car86], although some
issues have been raised in [Voe15]. We refer to the latter for a more
detailed description.

• Contextual categories can be seen as models of an essentially algebraic
theory. This already implies the existence of an initial contextual cate-
gory. Because of this the initiality conjecture for contextual categories
can be restated as the claim that this initial category is equivalent to the
one defined by the syntax of a dependent type theory. We have decided
not to go down this route.

3. Contextual Categories 51

To justify the claim that contextual categories are an abstraction of the
properties of C(MLTT), let us start by establishing that C(MLTT) comes
equipped with the structure of a contextual category.

Lemma 3.1.7. The term model C(MLTT) has the structure of a contextual
category.

Proof. We already know that C(MLTT) is a (strict) category. In what follows,
we define only the additional structure. The equations that they need to satisfy
follow readily by syntactic equalities. For details we refer to the formalization.

• We set ObC(MLTT) (=) B Ctx(=)/∼. Recall that � is the unique context
in Ctx(0) and that it is derivable. For any other (derivable) context Γ we
have the unique context moprhism ! which is derivable. This establishes
that [�] satisfies the properties of pt.

• For an object [Γ, �] ∈ ObC(MLTT) (= + 1) we define

ft[Γ, �] B [Γ]

by definition of a context being derivable. This is well-defined by defi-
nition of judgmental equality between contexts Definition 2.3.5.
We also define

p[Γ,�] B [wMor0(id=)] : [Γ, �] → [Γ]

by Lemma 2.3.7 and Lemma 2.3.10. This is well-defined since the ex-
pression wMor0(id=) only depends on the length =.

• For an object [Γ, �] ∈ ObC(MLTT) (=+1) andmorphism [X]with [cod(X)] =
ft[Γ, �] we define

[X]∗ [Γ, �] B [dom(X), �[X]]

byLemma 2.3.8. This iswell-defined byCorollary 2.3.9 andLemma 2.3.13.
We define a morphism

q([X], [Γ, �]) B [wMor+(X)] : [dom(X), �[X]] → [Γ, �]

by Lemma 2.3.7. This is well-defined by Lemma 2.3.16.

• Whenever we have a morphism [X, C], it breaks down into a morphism
[X] with dom(X, C) = dom(X), cod(X, C) = (cod(X), �) and dom(X) ` C :

52 3.1. Definition of contextual categories

�[X] for some type expression �, by derivability of context morphisms
Definition 2.3.5. Observe that

p[cod(X) ,�] ◦[X, C] = [wMor0(id)] ◦ [X, C] = [wMor0(id) [X, C]] = [X]

by Lemma 2.2.19 and Lemma 2.2.20. We define

s[X,C] = [id, C] : [dom(X)] → [dom(X), �[X]] = [X]∗ [cod(X), �]

by Lemma 2.3.10. This is well-defined by Corollary 2.3.9.
Moreover, if [cod(X), �] = [\]∗ [Γ, �] one can verify that

q([\], [Γ, �]) ◦ [X, C] = [wMor0(\) [X, C], C] = [\ [X], C]

which implies that s[X,C] = s(q([\], [Γ, �]) ◦ [X, C]), as its definition only
depends on the final term of the morphism in question. �

The contextual category C(MLTT) can help sketch intuition for the various
operations when working in an arbitrary contextual category.

Remark 3.1.8. It is important to note that up until this point the only rules
from MLTT that have been used to construct the term model were structural.
Indeed, the definition of a contextual category only captures this part of the
system. The logical rules will be covered once we impose additional structure
on a contextual category.

In addition, the definitions so far all go through even without quotienting
by judgmental equality. This is due to the structural rules not introducing any
non-trivial identifications. To the knowledge of the author, this fact has not
been noted in the literature.

Moreover, for a system without any (judgemental) computation or [rules
one should not need to take quotients when defining the logical structure of
the term model. This could give rise to a different approach in setting up the
term model. Because it is customary to take the quotients from the beginning
we have not explored this yet. Since quotient types turn out to cause some
complications in our formalization due to memory, this can be an argument for
exploring this different approach in the future.

Finally, many authors have raised philosophical, proof-theoretical and com-
putational issues with quotients. Our memory issue can be seen as yet another
argument to have a foundational system without them. This could be achieved
by a system without judgmental equality and all rules introducing non-trivial
judgmental equalities replaced by appropriate terms of an identity type instead,
see [Ber18] for an example in this direction.

3. Contextual Categories 53

3.2 Core structure
In this section we start by investigating the various structure and operations that
can be defined from the core operation of a contextual category. These will be
useful later on, once we try to interpret syntax. To help with intuition we will
sketch these in the special case of C(MLTT). Some results are given here in a
more general form than in the formalization, where they are shown only in the
cases required for the main result.

Let us start by noting that we can iterate the basic operations in the following
way:

Definition 3.2.1. Let C be a contextual category and :, = ∈ N. If - ∈ ObC(= +
:), We denote by ft: (-) ∈ ObC(=) and p:

-
: - → ft: (-) the object and

morphism defined inductively by the rules

ft0 - B - p0
- B id-

ft:+1 - B ft: (ft -) p:+1- B p:ft- ◦ p- .

We will extend the use of _ in diagrams to represent morphisms of the form
p:
-
.
If moreover . ∈ ObC(<) and 5 : . → ft: - , we denote by 5 ∗:- ∈

ObC(< + :) and q: (5 , -) : 5 ∗:- → - the object and morphism defined
inductively by the rules

5 ∗0- B . q0(5 , -) B 5

5 ∗:+1- B q: (5 , ft -)∗(-) q:+1(5 , -) B q(q: (5 , ft -), -).

One can prove by induction that ft: (5 ∗:) = . as well as the initial claim that
q: (5 , -) : 5 ∗: (-) → - . In particular ft(5 :+1(-)) = 5 ∗: (ft -) . All of the
above fits in the following commutative diagram

5 ∗:+1- -

5 ∗: (ft -) ft -

. ft:+1 -

q:+1 (5 ,-)

p-
p:+1
-q: (5 ,ft-)

p:ft-
5

which reduces to the ‘one-step’ diagram in Definition 3.1.5 for : = 0.

Example 3.2.2. In C(MLTT), this corresponds with repeating the operations
we had defined on them:

ft: [Γ, �0, . . . , �:−1] = [Γ]

54 3.2. Core structure

p: ([Γ, �0, . . . , �:−1] = [wMor:0 (id=)]
[X]∗: [Γ, �0, . . . , �:−1] = [dom(X), �0 [X], . . . , �:−1 [wCmor+:−1(X)]]
q: ([X], [Γ, �0, . . . , �:−1]) = [wCmor+: (X)]

Next we define a special class of morphism.

Definition 3.2.3. For - ∈ ObC(= + 1), a morphism D : ft(-) → - is called a
term morphism if p- ◦D = idft- .

Example 3.2.4. In C(MLTT) there is a one-to-one correspondence between
termmorphism and terms (up to judgmental equality). Given an object [Γ] and
a term expression C such that Γ ` C : � for some type expression �, we define a
morphism [((id, C), Γ, (Γ, �))] by Lemma 2.3.10 and Lemma 2.2.20. Observe
that p[Γ,�] ◦[id, C] = id[Γ] . On the other hand, given a term morphism [X, C] in
C(MLTT) it breaks down into a morphism [X] satisfying dom(X, C) = dom(X)
and cod(X, C) = (cod(X), �) for some type expression �. From it being a term
morphism we can deduce dom(X) ` id ≡ X : cod(X) and thus dom(X) ` C : �
by Lemma 2.3.8 and Lemma 2.2.20.

So, without loss of generality we can assume any term morphism in
C(MLTT) to be of the form [id, C].

Note that we have already encountered an example of a term morphism,
namely s 5 for 5 : . → - with - ∈ ObC(= + 1). In [Voe16, Section 3], the
notation Õb is used for the collection of all term morphisms. It is also not
uncommon to refer to these morphisms simply as sections. We will define a
∗-operation on term morphisms which will model the substitution in terms.

Definition 3.2.5. For :, = ∈ N, - ∈ ObC(= + : + 1), . ∈ ObC(<), 5 : . →
ft:+1 - and a term morphism D : ft - → - we define the term morphism
5 ∗:+1D : 5 ∗: (ft -) → 5 ∗:+1- by s(D ◦ q: (5 , ft -). This fits in the previous
diagram as

5 ∗:+1- -

5 ∗: (ft -) ft -

. ft:+1 -

q:+1 (5 ,-)

q: (5 ,ft-)
5 ∗:+1D D

5

which reduces to

3. Contextual Categories 55

5 ∗- -

. ft -

q(5 ,-)

5 ∗D

5

D

in the case : = 0. Observe that indeed

cod(5 ∗:+1D) = (p- ◦D ◦ q: (5 , ft -))∗- = (q: (5 , ft -))∗- = 5 ∗:+1-,

as D is a term morphism.

Example 3.2.6. In C(MLTT) this operation becomes

[X]∗ [id=, C] = [id<, C [X]]
[X]∗:+1 [id=+: , C] = [id<+: , C [wMor+: (X)]],

justifying why this represents ‘substitution in terms’.

We will identify a few special cases of these iterated ∗-operations.

Definition 3.2.7. We introduce notation for the following special cases of the
∗-operation.

• Weakening of objects: Consider the case where : ∈ N, - ∈ ObC(=+ :)
and . ∈ ObC(= + 1). If moreover ft. = ft: - , we write w: (-,.) for
p∗:
.
- ∈ ObC(=+ : +1). For : = 0 this can be though of as. representing

a context extension (-, �) of - by an arbitrary type �. For : = 1, we
have the diagram

w1(-,.) -

. ft. = ft -.

q(p. ,-)

p.

In C(MLTT), this operations computes as

w: ([Γ, �0, . . . , �:−1], [Γ, �]) = [Γ, �,wTy0(�0), . . . ,wTy:−1(�:−1)],

using Lemma 2.2.25. Notice the close resemblance with the definition
of wCtx: (Γ, �).
This case is labeled by) (., -) in [Voe16, Section 3]. In [Hof97, Section
2.4.1.2] the notation -+ is used for the variant of w0(-,.) in the realm
of categories with attributes.

56 3.2. Core structure

• Weakening of term morphisms: We extend the above to weakening of
term morphisms. Let : ∈ N, - ∈ ObC(= + : + 1) and . ∈ ObC(= + 1)
such that ft:+1 - = ft. . If C : ft - → - is a term morphism we write
w:+1(C, .) for the morphism p∗:+1

.
C : w: (ft -,.) → w:+1(-,.). In

C(MLTT) this becomes

w:+1([id=+: , C]) = [83=+:+1,wTm: (C)] .

In [Voe16, Section 3] the notation)̃ (., A) is used for this. In [Hof97,
Section 2.4.1.2] again the notation C+ is used for w0(C, .).

• Term substitution in objects: Consider now the case where : ∈ N,
- ∈ ObC(=+ 1+ :) and we have a term morphism D : ft(ft: -) → ft: - .
We will write - [D] for the object D∗:- ∈ ObC(= + :). For : = 0, we
simply have - [D] = ft - . For : = 1, we get the diagram

- [D] -

ft(ft -) ft -.

q(D,-)

D

In C(MLTT) this operation computes to

[Γ, �, �0, . . . , �:−1] [D] = [Γ, �0 [D], . . . , �:−1 [wMor+:−1(D)]]

which justifies its notation.
This case is labeled by ((B, -) in [Voe16, Section 3].

• Term substitution in term morphisms: Again, we extend term substi-
tution to term morphisms. Let : ∈ N, - ∈ ObC(= + 1 + : + 1) and D :
ft(ft:+1 -) → ft:+1 - a term morphism. If C : ft - → - is another term
morphism we write C [D] for the morphism D∗:+1C : (ft -) [D] → - [D].
In C(MLTT) we find

[id=+1+: , C] [D] = [id=+: , C [wMor+: (D)]] .

In [Voe16, Section 3], this case is denoted by (̃(B, A).

• Multiple term substitutions in a row: The above only describes the
substitution of one single term morphism, which can be iterated in the
following way. If substitution up to : terms has been defined already
and we have a sequence of term morphism D0, . . . D: such that D8 :
ft(ft:+1 -) → (ft:−8+1 -) [D0, . . . , D8−1], we define

- [D0, . . . , D:] B (. . . (- [D0]) [D1] . . .) [D:],

3. Contextual Categories 57

C [D0, . . . , D:] B (. . . (C [D0]) [D1] . . .) [D:] .

The following diagram illustrates this repeating process:

- [D0, . . . , D:] - [D0, . . . , D:−1] - [D0] -

ft(ft:+1 -) (ft -) [D0, . . . , D:−1] (ft -) [D0] ft -

ft(ft:+1 -) (ft: -) [D0] ft: -

ft(ft:+1 -) ft:+1 -

D:

C [D0,...,D:] C [D0,...,D:−1] C [D0] C

D1

D0

• Variables: We identity a special class of term morphisms that will
represent variables. For - ∈ ObC(=) and ; < =, we first write Ty; (-) ∈
ObC(= + 1) for the object defined inductively by

Ty0(-) B w1(-, -)
Ty;+1(-) B w1(Ty; (ft -), -).

Observe that ft(Ty; (-)) = - . We thenwrite x; (-) for the termmorphism

sp;
-

: - → (pft; - ◦ p;-)
∗(ft; -).

We show
Ty; (-) = (pft; - ◦ p;-)

∗(ft; -),

by structural induction on ;. The case ; = 0 follows by definition
w1(-, -) = p∗

-
(-). Suppose it holds for ;. We find by expanding

the definitions

Ty;+1(-) = w1(Ty; (ft -), -)
= w1((pft; (ft-) ◦ p;ft-)

∗(ft; (ft -))), -)
= p∗- ((pft;+1 - ◦ p;ft-)

∗(ft;+1 -))
= (pft;+1 - ◦ p;ft- ◦ p-)∗(ft;+1 -)
= (pft;+1 - ◦ p;+1-)

∗(ft;+1 -)

as required. The following diagram gives an illustration of these defini-
tions

58 3.2. Core structure

Ty; (-) ft; (-)

- ft; (-) ft(ft; -)

q

x; (-)

In C(MLTT) one can show that

Ty; ([Γ]) = [Γ, Γ;],
x; ([Γ]) = [id=, x;]

as expected.
In [Voe16, Section 3], x0(-) is considered and denoted by X(-). This
notations stems from the observation that x0(-) defines a diagonal map
- → w1(-, -).

Semantic equalities
From the definitions of the previous section, we observe that we are able to
define all the semantic counterparts of the operations we encountered in syntax
in terms of semantic substitution. This is one of the benefits of the semantic side,
howeverwe do need to show that these semantic operations behave the sameway
as the syntactic ones. For instance, we need w1(x0(-), �) = x1(w0(�, -)) as
morphisms in a arbitrary contextual category. Syntactically, this follows readily
by definition of weakening: wTm0(x0) = x1.

In this section we will discuss various of these semantic equalities. We
will follow a similar approach as for the syntactic equalities and refer to the
formalization for the details of the proofs.

We start by showing that semantically, weakening and total substitution
commute.

Lemma 3.2.8. For : ∈ N, - ∈ ObC(= + :), . ∈ ObC(= + 1) such that
ft: - = ft. and 6 : / → ft: - we have

6∗:+1(w: (-, �)) = w: (6∗:-, 6∗�).

Proof. We do not prove the lemma directly. Instead, by a straightforward
induction on : one shows that the composition

q: (p. , -) ◦ q:+1(6,w: (-,.)) : 6∗:+1(w: (-,.)) → w: (-, �) → -

is equal to the composition

q: (6, -) ◦ q: (p6∗�, 6∗:-) : w: (6∗:-, 6∗.) → 6∗:- → -,

which implies their sources must be equal as well. �

3. Contextual Categories 59

Similarly, total substitution and term substitution commute.

Lemma 3.2.9. For - ∈ ObC(= + 1 + :), D : ft(ft: -) → ft: - and 5 : . →
ft(ft: -) we have

5 ∗: (- [D]) = (q(5 , ft: -)∗:-) [5 ∗(D)] .

Proof. Again, instead one shows by a straightforward induction on : one shows
that the composition

q: (D, -) ◦ q: (5 , - [D]) : 5 ∗: (- [D]) → - [D] → -

is equal to the composition

q: (q(5 , ft: -), -) ◦ q: (5 ∗D, q(5 , ft: -)∗:-) :
(q(5 , ft: -)∗:-) [5 ∗D] → (q(5 , ft: -))∗:- → -,

which gives the desired result. As an illustration, the base case is showing that
the diagram

5 ∗- -

. ft -

q(5 ,-)

5 ∗D

5

D

commutes, which follows from

q(5 , -) ◦ 5 ∗D = q(?- ◦ D ◦ 5 , -) ◦ sD◦ 5
= D ◦ 5

since D is a termmorphism and the commuting diagram for s inDefinition 3.1.5.
�

For semantic equalities involving term morphisms, one often uses the fol-
lowing properties.

Lemma 3.2.10. For appropriate morphism 5 and 6 we have

s(s6 ◦ 5) = s(6 ◦ 5).

Proof. This follows immediately by

s(s6 ◦ 5) = s(q(p- ◦6, -) ◦ s6 ◦ 5) = s(6 ◦ 5).

using the basic properties of s. �

60 3.2. Core structure

Lemma 3.2.11. For a term morphism D : ft - → - we have

sD = D

Proof. The calculation

D = q(p- ◦D, -) ◦ sD = q(idft-) ◦ sD = id- ◦ sD = sD

gives the desired result. �

Corollary 3.2.12. Given a term morphism D : ft(-) → - and appropriate
morphisms 5 and 6 we have

(6 ◦ 5)∗D = 5 ∗(6∗D),
(id)∗D = D. �

The following shows that substitution in semantic variables behaves the
same as the syntactic definition.

Lemma 3.2.13. For - ∈ ObC(=), ; ∈ Fin(=), . ∈ ObC(<) and 6 : . → - we
have

6∗(x0(-)) = s6
6∗(x;+1(-)) = (p- ◦6)∗(x; (ft -))

Proof. Writing out the definitions and using Lemma 3.2.10. �

Remark 3.2.14. Observe the special case for a term morphism D is a term
morphism

(x0(-)) [D] = sD = D
(x;+1(-)) [D] = (p- ◦D)∗(x; (ft -)) = (id)∗(x; (ft -)) = x; (ft -),

which can be read as saying the intuition of Example 3.2.4 holds in any con-
textual category.

In the same vein, weakening of semantic variables behaves just like the
definition in syntax.

Lemma 3.2.15. For : ∈ N, ; ∈ Fin(= + :), - ∈ ObC(= + :), . ∈ ObC(= + 1)
with ft(.) = ft: (-) we have

w:+1(x; (-), .) = xwVar: (;) (w: (-,.))

3. Contextual Categories 61

Proof. One start with an induction on : . The base case is straightforward.
For : + 1 one starts an additional induction on ;. The base case is again
straightforward, and the case ; + 1 uses both the general induction hypotheses
as well as the case : = 0. Lemma 3.2.10 is used throughout. �

Inspecting the target of each of the above two morphisms we find:

Corollary 3.2.16. For : ∈ N, ; ∈ Fin(= + :), - ∈ ObC(= + :), . ∈ ObC(= + 1)
with ft. = ft: - we have

w:+1(Ty; (-), .) = TywVar: (;) (w: (-,.))

Next we observe that the ∗-operation can be understood as appending the
morphism by variables as is the case in C(MLTT).

Lemma 3.2.17. For : ∈ N, ; ∈ Fin(:), - ∈ ObC(= + :), . ∈ ObC(<) and
6 : . → ft: - we have

6∗:+1(x; (-)) = x; (6∗-).

Proof. By an induction on : and essentially the same techniques as the previous
lemmas. �

Again, inspecting the target of the above two morphism gives us:

Corollary 3.2.18. For : ∈ N, ; ∈ Fin(:), - ∈ ObC(= + :), . ∈ ObC(<) and
6 : . → ft: (-) we have

6∗:+1(Ty; (-)) = Ty; (6∗: (-)).

What follows is the interaction between semantic term substitution and
weakening. We have seen this before in syntax by Lemma 2.2.19.

Lemma3.2.19. For : ∈ N, - ∈ ObC(=+:),. ∈ ObC(=+1) with ft(.) = ft: (-)
and term morphism D : ft(.) → . we have

(w: (-,.)) [D] = -

Proof. By induction on : . The main idea is sketched in the following commu-
tative diagram

(w: (-,.)) [D] w: (-,.) -

ft: - = ft. . ft: -

id

D

id

62 3.3. Additional structure from logical rules

using that D is a term morphism. �

Lemma 3.2.20. For : ∈ N, - ∈ ObC(= + : + 1), . ∈ ObC(= + 1) with
ft. = ft:+1 - and term morphisms C : ft - → - and D : ft. → . we have

(w:+1(C, .)) [D] = C. �

Finally, there is a special case for substitution by the last variable. This
is due to the observation that x0(-) not only computes to the identity af-
ter post composition with p but also with q by the commuting diagram in
Definition 3.1.5.

Lemma 3.2.21. For : ∈ N and - ∈ ObC(= + 1 + :) we have

(w:+1(-, ft: -)) [x0(ft: -)] = -.

Proof. Straightforward induction on : . We sketch the main idea in a commu-
tative diagram

(w:+1(-, ft: -)) [x0(ft: -)] w:+1(-, ft: -) -

ft: - Ty0(ft: -) ft: -

ft: - ft(ft: -). �

id

x0 (ft: -)

id

3.3 Additional structure from logical rules
We will now proceed to translate all the type and term constructors as well
as their logical rules into the realm of contextual categories. This is a very
mechanical process and similar translations can for instance be found in [KL20]
and [Hof97]. For every constructor we introduce an analogous structure on
a contextual category. The properties this structure has are then decided by
the logical rules that involve the particular constructor. Additionally, we need
to include that the structure is stable under the ∗-operation. This ties in with
substitution being a more primitive operation in semantics and not inductively
defined as was the case in syntax. On the other hand, congruence rules do not
have to be added, as we get them for free from the strictness of our category.

For this purpose we will introduce some additional notation that will im-
prove readability. This is similar to the convention in [KL20]. Given an object

3. Contextual Categories 63

- ∈ ObC(=), we mean by ‘an object (-.�)’ an object � ∈ ObC(=+1) such that
ft � = - . We will write (-.�0. · · · .�:) instead of ((· · · (-.�0).�1 · · ·).�:).
We may write (-.�) ∈ ObC(= + 1) on its own without explicitly introducing
- ∈ ObC(=) first.

The translation procedure consist roughly of the following procedure.
Given a rule, we equip a contextual with an operation taking, as input, ob-
jects and term morphisms corresponding with the premises of the rule and
producing as output an object, term morphism, or equality corresponding to
the conclusion. If a premise or the conclusion involves earlier defined struc-
tures, then the contextual category must be assumed to come equipped with it.
This last part will appear less prevalent in our write-up, as we have bundled
together various related structures. It is more present in our formalization.

Our translationwill differ in one aspect compared to say [KL20] or [Hof97].
We have chosen to stick completely to the presentation of the rules of the system
when defining the structure. As an example, consider the suc -INTRO rule

Γ ` D : N
Γ ` suc(D) : N

.

The corresponding structure in [Hof97, Definition 2.4.20] is a morphism

sucStr(-) : NatStr(-) → NatStr(-)

while in our setup the structure corresponds to a term morphism

sucStr(-, D) : - → NatStr(-).

The form we use is slightly more verbose, but gives an entirely uniform transla-
tion for all rules. Due to this difference we have decided to include all structure
explicitly instead of writing a heuristic definition. This should also help a
reader planning to extend our system.

Throughout this section, let C be a contextual category.

Definition 3.3.1. A Empty-type structure on C consists of

1. For each object - ∈ ObC(=) an object (-. EmptyStr(-)), i.e. an object
EmptyStr(-) ∈ ObC(= + 1) such that ft(EmptyStr(-)) = - .

2. For each object (-. EmptyStr(-).%) ∈ ObC(= + 2) and term morphism
D : - → EmptyStr(-) a term morphism

empty_elimStr(-, %, D) : - → %[D] .

64 3.3. Additional structure from logical rules

3. Such that for each 6 : . → - and the appropriate arguments

6∗(EmptyStr(-)) = EmptyStr(.),
6∗(empty_elimStr(-, %, D)) = empty_elimStr(., 6∗2(%), 6∗(D))

Remark 3.3.2.

• Instead of . we could also write 6∗0(-).

• Observe in the last equality that indeed

ft(6∗2(%)) = 6∗(ft %) = 6∗(EmptyStr(-)) = EmptyStr(.)
6∗D : . → 6∗(EmptyStr(-)) = EmptyStr(.).

which justifies the notation. We leave it up to the reader to check these
kinds of justifications for themselves if necessary.

Definition 3.3.3. A Unit-type structure on C consists of

1. For each object - ∈ ObC(=) an object (-.UnitStr(-)).

2. For each object - ∈ ObC(=) a term morphism

★-Str(-) : - → UnitStr(-).

3. For each object (-.UnitStr(-).%) ∈ ObC(= + 2), term morphism 3★ :
- → %[★-Str(-)] and term morphism D : - → UnitStr(-) a term
morphism

unit_elimStr(-, %, 3★, D) : - → %[D]
satisfying

unit_elimStr(-, %, 3★, ★-Str(-)) = 3★.

4. Such that for each 6 : . → - and the appropriate arguments

6∗(UnitStr(-)) = UnitStr(.),
6∗(★-Str(-)) = ★-Str(.),

6∗(unit_elimStr(-, %, 3★, D)) = unit_elimStr(., 6∗2(%), 6∗(3★), 6∗(D)).

Definition 3.3.4. A Nat-type structure on C consists of

1. For each object - ∈ ObC(=) an object (-.NatStr(-)).

2. For each object - ∈ ObC(=) a term morphism

zeroStr(-) : - → NatStr(-).

3. Contextual Categories 65

3. For each object - ∈ ObC(=) and term morphism D : - → NatStr(-) a
term morphism

sucStr(-, D) : - → NatStr(-).

4. For each

• object (-.NatStr(-).%) ∈ ObC(= + 2),
• term morphism 3zero : - → %[zeroStr(-)],
• term morphism
3suc : %→ (w2(w2(%,NatStr(-)), %)) [sucStr(%, x1(%))],

• term morphism D : - → NatStr(-),

a term morphism

indStr(-, %, 3zero, 3suc, D) : - → %[D]

satisfying

indStr(-, %, 3zero, 3suc, zeroStr(-)) = 3zero,

indStr(-, %, 3zero, 3suc, sucStr(-, D)) = 3suc [D, indStr(-, %, 3zero, 3suc, D)] .

5. Such that for each 6 : . → - and the appropriate arguments

6∗(NatStr(-)) = NatStr(.),
6∗(zeroStr(-)) = zeroStr(.),
6∗(sucStr(-, D)) = sucStr(., 6∗(D)),

6∗(indStr(-, %, 3zero, 3suc, D)) = indStr(., 6∗3(%), 6∗(3zero), 6∗2(3suc), 6∗(D)).

Definition 3.3.5. A Sum-type structure on C consists of

1. For each pair of objects (-.�), (-.�) ∈ ObC(= + 1) an object
(-. SumStr(-, �, �)).

2. For each pair of objects (-.�), (-.�) ∈ ObC(= + 1) and term morphism
0 : - → � a term morphism

inlStr(-, �, �, 0) : - → SumStr(-, �, �).

3. For each pair of objects (-.�), (-.�) ∈ ObC(= + 1) and term morphism
1 : - → � a term morphism

inrStr(-, �, �, 1) : - → SumStr(-, �, �).

66 3.3. Additional structure from logical rules

4. For each

• pair of objects (-.�), (-.�) ∈ ObC(= + 1),
• object (-. SumStr(-, �, �).%) ∈ ObC(= + 2),
• term morphism
3inl : �→ (w2(%, �)) [inlStr(w1(�, �),w1(�, �), x0(�))],

• term morphism
3inr : �→ (w2(%, �)) [inrStr(w1(�, �),w1(�, �), x0(�))],

• term morphism D : - → SumStr(-, �, �),

a term morphism

matchStr(-, �, �, %, 3inl, 3inr, D) : - → %[D]

satisfying

matchStr(-, �, �, %, 3inl, 3inr, inlStr(-, �, �, 0)) = 3inl [0],
matchStr(-, �, �, %, 3inl, 3inr, inrStr(-, �, �, 1)) = 3inr [1] .

5. Such that for each 6 : . → - and the appropriate arguments

6∗(SumStr(-, �, �)) = SumStr(., 6∗(�), 6∗(�)),
6∗(inlStr(-, �, �, 0)) = inlStr(., 6∗(�), 6∗(�), 6∗(0)),
6∗(inrStr(-, �, �, 1)) = inrStr(., 6∗(�), 6∗(�), 6∗(0)),

6∗(matchStr(-, �, �, %, 3inl, 3inr, D)) =
matchStr(., 6∗(�), 6∗(�),6∗2(%), 6∗2(3inl), 6∗2(3inr), 6∗(D)).

6. And satisfies [-expansion if for the appropriate arguments

matchStr(-, �, �,w1(SumStr(-, �, �), SumStr(-, �, �)),
inlStr(�,w1(�, �),w1(�, �), x1(�)),
inrStr(�,w1(�, �),w1(�, �), x1(�)),
D) = D.

Definition 3.3.6. A Π-type structure on C consists of

1. For each object (-.�.�) ∈ ObC(= + 2) an object (-.Π-Str(-, �, �)).

2. For each object (-.�.�) ∈ ObC(= + 2) and term morphism D : � → �

a term morphism

_-Str(-, �, �, D) : - → Π-Str(-, �, �).

3. Contextual Categories 67

3. For each object (-.�.�) ∈ ObC(= + 2), term morphism 5 : - →
Π-Str(-, �, �) and term morphism 0 : - → � a term morphism

app(-, �, �, 5 , 0) : - → �[0]

satisfying
app(-, �, �, _-Str(-, �, �, D), 0) = D[0] .

4. Such that for each 6 : . → - and the appropriate arguments

6∗(Π-Str(-, �, �)) = Π-Str(., 6∗(�), 6∗2(�)),
6∗(_-Str(-, �, �, D)) = _-Str(., 6∗(�), 6∗2(�), 6∗2(D)),
6∗(app(-, �, �, 5 , 0)) = app(., 6∗(�), 6∗2(�), 6∗(5), 6∗(0)).

5. And satisfies [-expansion if for the appropriate arguments

_-Str(-, �, �, app(�,w1(�, �),w2(�, �),w1(5 , �), x0(�))) = 5 .

Definition 3.3.7. A Σ-type structure on C consists of

1. For each object (-.�.�) ∈ ObC(= + 2) an object (-.Σ-Str(-, �, �)).

2. For each object (-.�.�) ∈ ObC(= + 2), term morphism 0 : - → � and
term morphism 1 : - → �[0] a term morphism

pairStr(-, �, �, 0, 1) : - → Σ-Str(-, �, �).

3. For each object (-.�.�) ∈ ObC(= + 2) and term morphism D : - →
Σ-Str(-, �, �) a term morphism

pr1-Str(-, �, �, D) : - → �

satisfying

pr1-Str(-, �, �, pairStr(-, �, �, 0, 1)) = 0.

4. For each object (-.�.�) ∈ ObC(= + 2) and term morphism D : - →
Σ-Str(-, �, �) a term morphism

pr2-Str(-, �, �, D) : - → �[pr1-Str(-, �, �, D)]

satisfying

pr2-Str(-, �, �, pairStr(-, �, �, 0, 1)) = 1.

68 3.3. Additional structure from logical rules

5. Such that for each 6 : . → - and the appropriate arguments

6∗(Σ-Str(-, �, �)) = Σ-Str(., 6∗(�), 6∗2(�)),
6∗(pairStr(-, �, �, 0, 1)) = pairStr(., 6∗(�), 6∗2(�), 6∗(0), 6∗(1)),
6∗(pr1-Str(-, �, �, D)) = pr1-Str(., 6∗(�), 6∗2(�), 6∗(D)),
6∗(pr2-Str(-, �, �, D)) = pr2-Str(., 6∗(�), 6∗2(�), 6∗(D)).

6. And satisfying [-expansion if for the appropriate arguments

pairStr(-, �, �, pr1-Str(-, �, �, D), pr2-Str(-, �, �, D)) = D.

Definition 3.3.8. A Id-type structure on C consists of

1. For each object (-.�) ∈ ObC(= + 1) and pair of term morphism 0, 1 :
- → � an object (-. IdStr(-, �, 0, 1)).

2. For each object (-.�) ∈ ObC(= + 1) and term morphism 0 : - → � a
term morphism

reflStr(-, �, 0) : - → IdStr(-, �, 0, 1).

3. For readability, we introduce the notation

Id(�) B IdStr(w1(�, �),w1(w1(�, �),w1(�, �)),
x1(w1(�, �)), x0(w1(�, �))).

Observe that (-.�.w1(�, �).Id(�)) ∈ ObC(= + 3).

4. For each

• object (-.�) ∈ ObC(= + 1),
• object (Id(�).%) ∈ ObC(= + 4),
• term morphism
3refl : �→ (w4(%, �)) [x0(�), x0(�), reflStr(�,w1(�, �), x0(�))],

• term morphism 0 : - → �,
• term morphism 1 : - → �,
• term morphism ? : - → IdStr(-, �, 0, 1),

a term morphism

J-Str(-, �, %, 3refl, 0, 1, ?) : - → %[0, 1, ?]

satisfying

J-Str(-, �, %, 3refl, 0, 0, reflStr(-, �, 0)) = 3refl [0] .

3. Contextual Categories 69

5. Such that for each 6 : . → - and the appropriate arguments

6∗(IdStr(-, �, 0, 1)) = IdStr(., 6∗(�), 6∗(0), 6∗(1)),
6∗(reflStr(-, �, 0)) = reflStr(., 6∗(�), 6∗(0)),

6∗(J-Str(-, �, %, 3refl, 0, 1, ?)) =
J-Str(., 6∗(�), 6∗4(%),6∗2(3refl), 6∗(0), 6∗(1), 6∗(?)).

Definition 3.3.9. A hierarchy of universes on C consists of

1. For each 8 ∈ N and object - ∈ ObC(=) an object (-.U-Str(8, -)).

2. For each 8 ∈ N and object - ∈ ObC(=) a term morphism

u-Str(8, -) : - → U-Str(8 + 1, -).

3. For each 8 ∈ N, object - ∈ ObC(=) and term morphism E : - →
U-Str(8, -) an object (-. ElStr(8, -, E)) satisfying

ElStr(8 + 1, -, u-Str(8, -)) = U-Str(8, -).

4. Such that for each 6 : . → - and the appropriate arguments

6∗(U-Str(8, -)) = U-Str(8, .),
6∗(u-Str(8, -)) = u-Str(8, .),

6∗(ElStr(8, -, E)) = ElStr(8, . , 6∗(E)).

5. Additional, if C has

• Empty-type structure: a term morphism

emptyStr(8, -) : - → U-Str(8, -)

such that

6∗(emptyStr(8, -)) = emptyStr(8, .)
ElStr(8, -, emptyStr(8, -)) = EmptyStr(-).

• Unit-type structure: a term morphism

unitStr(8, -) : - → U-Str(8, -)

such that

6∗(unitStr(8, -)) = unitStr(8, .)
ElStr(8, -, unitStr(8, -)) = UnitStr(-).

70 3.3. Additional structure from logical rules

• Nat-type structure: a term morphism

natStr(8, -) : - → U-Str(8, -)

such that

6∗(natStr(8, -)) = natStr(8, .)
ElStr(8, -, natStr(8, -)) = NatStr(-).

• Sum-type structure: for each term morphism 0 : - → U-Str(8, -)
and term morphism 1 : - → U-Str(8, -) a term morphism

sumStr(8, -, 0, 1) : - → U-Str(8, -)

such that

6∗(sumStr(8, -, 0, 1)) = sumStr(8, . , 6∗(0), 6∗(1))
ElStr(8, -, sumStr(8, -, 0, 1)) =

SumStr(-,ElStr(8, -, 0),ElStr(8, -, 1)).

• Π-type structure: for each term morphism 0 : - → U-Str(8, -)
and term morphism 1 : ElStr(8, -, 0) → U-Str(8,ElStr(8, -, 0)) a
term morphism

c-Str(8, -, 0, 1) : - → U-Str(8, -)

such that

6∗(c-Str(8, -, 0, 1)) = c-Str(8, . , 6∗(0), 6∗2(1))
ElStr(8, -, c-Str(8, -, 0, 1)) =

Π-Str(-,ElStr(8, -, 0),ElStr(8,ElStr(8, -, 0), 1)).

• Σ-type structure: for each termmorphism 0 : - → U-Str(8, -) and
term morphism 1 : ElStr(8, -, 0) → U-Str(8,ElStr(8, -, 0)) a term
morphism

f-Str(8, -, 0, 1) : - → U-Str(8, -)

such that

6∗(f-Str(8, -, 0, 1)) = f-Str(8, . , 6∗(0), 6∗2(1))
ElStr(8, -, f-Str(8, -, 0, 1)) =

Σ-Str(-,ElStr(8, -, 0),ElStr(8,ElStr(8, -, 0), 1)).

3. Contextual Categories 71

• Id-type structure: for each termmorphism 0 : - → U-Str(8, -) and
pair of term morphisms D, E : - → ElStr(8, -, 0) a term morphism
idStr(8, -, 0, D, E) : - → U-Str(8, -) such that

6∗(idStr(8, -, 0, D, E)) = idStr(8, . , 6∗(0), 6∗(D), 6∗(E))
ElStr(8, -, idStr(8, -, 0, D, E)) = IdStr(-,ElStr(8, -, 0), D, E).

Definition 3.3.10. A contextual category C is considered fully structured if it is
equipped with a chosen structure of all the previous mentioned ones including
a hierarchy of universes and satisfies the various [-expansions.

The following justifies that claim that the above definition correctly capture
all the constructors of MLTT.

Theorem 3.3.11. The contextual category C(MLTT) is fully structured.

Proof. The proof essentially writes itself. Each structure is formed by the
appropriate formation, introduction and elimination rules in addition with ob-
servations from Example 3.2.4 about terms morphisms in C(MLTT). In par-
ticular, the structure corresponding to a type constructor on an object has the
form

[Γ, constructor],

and the structure corresponding to term constructor has the form

[id, constructor] : [Γ] → [Γ, �]

for an appropriate type expression �. As an example we set

NatStr([Γ]) B [Γ,N]

which is a derivable context by N -FORM and

sucStr([Γ], [id, D]) B [id, suc(D)] : [Γ] → [Γ,N]

which is derivable by suc -INTROand relies on observations fromExample 3.2.4
about term morphisms in C(MLTT). The structures are all well-defined by the
congruence rules. The various other equations that are needed to be satisfied
follow by syntactic equalities, the computation rules or the [rules. We refer to
the formalization for the details.

At a few places, one must use an additional syntactic equality in order to
match the premises of a rule with the premises of the structure. For instance,
in ind -ELIM, the type of 3suc is

(wTy1(wTy1(%))) [suc(x1)]

72 3.3. Additional structure from logical rules

which matches the object1

(w2(w2(%,NatStr(-)), %)) [sucStr(%, x1(%))]

in C(MLTT) only up to syntactic equality, since weakening on objects in a
contextual category is defined in terms of substitution. �

Remark 3.3.12. Even though the above proofs are straightforward, our current
formalization fails to type check with a reasonable amount of RAM. To be pre-
cise, we have not been able to type check the formalization of the J-constructor,
due to the complexity of 3refl. This can be fixed by forcing unnecessary data
to be erased. We will discuss this further once we get to the formalization in
Chapter 5.

Morphisms between (structured) contextual categories
So far we have not mentioned what we consider a morphism between two
contextual categories to be. This is crucial to even state the initiality conjec-
ture. A morphism of contextual categories will be a functor that preserves all
the structure on the nose. This agrees with the concept of homomorphisms
when considering a contextual category as an essentially algebraic theory as in
Remark 3.1.6 and as discussed in [KL20, Definition 1.2.7]. As we are inter-
ested in the systemMLTTwewill consider morphisms between fully structured
contextual categories only, but it should be clear how they can be altered for
more general settings.

Definition 3.3.13. Given two fully structured contextual categories C and D,
a morphism of fully structured contextual categories or contextual morphism
for short is a functor � : C→ D between the underlying categories, respecting
the grading and preserving all the structure on the nose.

Additionally, it will be important to know when two contextual morphisms
are equal. It will be enough to verify they are equal as functors.

Lemma 3.3.14. If �, � : C → D are contextual morphisms between fully
structured contextual categories such that

• for any object - ∈ ObC, � (-) = � (-),

• for any morphism 5 : - → . in C, � (5) = � (5),

then � = �.
1Observe we need to increase the position by one, as semantically it is defined on

contexts not types, i.e. it follows the same ‘level’ as the syntactic operation wCtx: (−).

3. Contextual Categories 73

Proof. It should not be surprising that � and� will also agree on the additional
data. However, we do need function extensionality in our metatheory to turn
both premises in equalities on which we can pattern match. A reader with a
more classical background should not have to worry about this. �

We now have all the ingredients ready to tackle the initiality conjecture,
which will be the topic of the next chapter.

74 3.3. Additional structure from logical rules

75

4. Initiality

Given everything we have introduced so far, we are finally in a position to
properly state the initiality theorem:

Theorem 4.0.1. The term model C(MLTT) is the initial fully structured con-
textual category, i.e. for any fully structured contextual category C, there exists
a unique contextual morphism C(MLTT) → C.

We will prove this theorem in two steps. First, we show that for any
contextual category C, there exists a contextual morphism C(MLTT) → C.
This map is commonly called the interpretation function. To achieve this, we
first define a partial function on raw syntax and then show that this map is
total for well-formed expressions. This technique is originally due to Streicher
[Str91] and slightly modified by Hofmann [Hof97]. Next, we show that any
two contextual morphisms �, � : C(MLTT) → C are equal. We choose to take
two arbitrary contextual morphism, in order to make the two steps independent
of one another. Combining them will result in the proof of Theorem 4.0.1.

Throughout this chapter, let C be a fully structured contextual category.

4.1 Partial interpretation
As mentioned before we start by establishing the existence of a contextual
morphism C(MLTT) → C. One might be tempted to define this functor
directly. However, derivation are not unique due to rules like Conv. Because
of this, we cannot define the components of such a functor just by induction on
derivation treeswithout changing the syntax admitting either unique derivations
or some coherence result. This is a known issue and discussed for instance in
[Cur93], [CGH14] and [Yam17].

In this thesis we follow the approach contributed to Streicher [Str91]. This
method was also suitable for formalization. We start by defining the partial
interpretation operation on raw syntax. For this we will first be precise about
what we mean by partial elements.

Definition 4.1.1. For a set - we write Partial - for the set of partial elements
of - , i.e. subsets of - with at most one element or, equivalently, a map from

76 4.1. Partial interpretation

some proposition to - . A partial operation from . to - is an operation
. → Partial - .

For G ∈ Partial - we say that G is defined and write G↓ for short if G is
non-empty. In the case that G↓ we also write G for its unique element. This
abuse of notation should not raise any confusion.

We introduce the following relation on partial elements. For G, H ∈ Partial -
we write G ≤ H to mean that if G↓, then H↓ and G = H. Observe that if both
G ≤ H and H ≤ G we find the usual Kleene equality which we write G ' H. We
note that ≤ is a partial order.

Remark 4.1.2. It is discussed in [Kna18, Part III] that the above definition is
a generalization of the classical approach of defining partial operations as total
functions . → - + 1. It is also shown, among other things, that Partial forms
a monad. We use this monadic structure to implement partial function in our
formalization. However, in the body of this thesis we stick to a prose write-up.

Wewill view the operations on a fully structured contextual category also as
partial operations. For example SumStr(-, �, �) ∈ Partial ObC and is defined
precisely when ft � = - and ft � = - and sucStr(-, D) ∈ Partial MorC which
is defined precisely when D is a term morphism - → NatStr(-). We will treat
the basic operations such as q and p similarly.

We follow the convention that if an expression contains an undefined subex-
pression it is itself undefined.

Definition 4.1.3. We define two operations

È−É−Ty : TyExpr(=) × ObC(=) → Partial ObC
È−É−Tm : TmExpr(=) × ObC(=) → Partial MorC

bymutual structural induction on raw syntax. Wewill often omit the subscripts.

È0É- B EmptyStr(-)
È1É- B UnitStr(-)
ÈNÉ- B NatStr(-)

È� +++ �É- B SumStr(-, È�É- , È�É-)

ÈΠ��É- B Π-Str(-, È�É- , È�É(È�É
-))

ÈΣ��É- B Σ-Str(-, È�É- , È�É(È�É
-))

ÈId�(D, E)É- B IdStr(-, È�É- , ÈDÉ- , ÈEÉ-)
ÈU8É- B U-Str(8, -)

ÈEl8 (E)É- B ElStr(-, ÈEÉ-)

4. Initiality 77

Èx;É- B x; (-)
Èempty_elim(%, D)É- B empty_elimStr(-, È%ÉEmptyStr(-)

, ÈDÉ-)
È★É- B ★-Str(-)

Èunit_elim(%, 3★, D)É- B unit_elimStr(-, È%ÉUnitStr(-)
, È3★É- , ÈDÉ-)

ÈzeroÉ- B zeroStr(-)
Èsuc(D)É- B sucStr(-, ÈDÉ-)

Èind(%, 3zero, 3suc, D)É- B indStr(-, È%ÉNatStr(-)
, È3zeroÉ- ,

È3sucÉ(È%É
NatStr(-))

, ÈDÉ-)
Èinl(�, �, 0)É- B inlStr(-, È�É- , È�É- , È0É-)
Èinr(�, �, 1)É- B inrStr(-, È�É- , È�É- , È1É-)

Èmatch(�, �, %, 3inl, 3inr, D)É- B matchStr(-, È�É- , È�É- ,

È%ÉSumStr(-,È�É- ,È�É-)
, È3inlÉ(È�É

-)
, È3inrÉ(È�É

-)
, ÈDÉ-)

È_(�, �, D)É- B _-Str(-, È�É- , È�É(È�É
-)
, ÈDÉ(È�É

-))

Èapp(�, �, 5 , 0)É- B app(-, È�É- , È�É(È�É
-)
, È 5 É- , È0É-)

Èpair(�, �, 0, 1)É- B pairStr(-, È�É- , È�É(È�É
-)
, È0É- , È1É-)

Èpr1(�, �, D)É
- B pr1-Str(-, È�É- , È�É(È�É

-)
, ÈDÉ-)

Èpr2(�, �, D)É
- B pr2-Str(-, È�É- , È�É(È�É

-)
, ÈDÉ-)

Èrefl(�, 0)É- B reflStr(-, È�É- , È0É-)

ÈJ(�, %, 3refl, D, E, ?)É- B jStr(-, È�É- , È%ÉId(È�É-)
, È3reflÉ(È�É

-)
,

ÈDÉ- , ÈEÉ- , È?É-)
È08É- B emptyStr(8, -)
È18É- B unitStr(8, -)
Èn8É- B natStr(8, -)
Èu8É- B u-Str(8, -)

È0 +8 1É- B sumStr(-, È0É- , È1É-)

Èc8 (0, 1)É- B c-Str(-, È0É- , È1ÉElStr(-,È0É-))

Èf8 (0, 1)É- B f-Str(-, È0É- , È1ÉElStr(-,È0É-))
Èid8 (0, D, E)É- B idStr(-, È0É- , ÈDÉ- , ÈEÉ-).

78 4.2. Totality

We make the following observation about the partial interpretation just
defined. They follow from the definition of the various structure.

Lemma 4.1.4. For - ∈ ObC(=) we have

• if È�É-Ty ↓ then È�É
-
Ty ∈ ObC(= + 1) and ft(È�É-Ty) = - ,

• if ÈDÉ-Tm ↓ then ÈDÉ
-
Tm is a term morphism

ÈDÉ-Tm : - → cod(ÈDÉ-Tm). �

We can extend our interpretation to raw contexts and raw context mor-
phisms. Observe that these reflect the deduction rules for contexts and context
morphisms Definition 2.3.5.

Definition 4.1.5. We define two function

È−ÉCtx : Ctx(=) → Partial ObC(=)
È−É−,−CtxMor : CtxMor(<, =) × ObC(<) × ObC(=) → Partial MorC

by structural induction on raw syntax. Again we will often omit the subscripts.

È�É B pt

ÈΓ, �É B È�ÉÈΓÉ

È!É-,pt B ptmor-
ÈX, CÉ-,. B q(ÈXÉ-,ft.CtxMor , .) ◦ ÈCÉ

-
Tm

Remark 4.1.6. Reading the partiality in q and composition, ÈX, CÉ-,. is defined
precisely when

• ÈXÉ-,ft.CtxMor ↓ and cod(ÈXÉ-,ft.) = ft. ,

• ÈCÉ-Tm ↓ and cod(ÈCÉ-) = (ÈXÉ-,ft.)∗. .

The following is immediate.

Lemma 4.1.7. If ÈXÉ-,.CtxMor ↓ then ÈXÉ
-,.

CtxMor : - → . . �

4.2 Totality
The key observation about the partial interpretation is that if the input is well-
formed then the output is defined. In order to show this, we first need lemmas
that deal with the interpretation of weakening and substituting as these are
present in various rules. This is a common first step, see for instance [Hof97,
Proposition 2.5.3 and Lemma 2.5.5].

4. Initiality 79

Weakening
We need the result about weakening first as it is used in the case for substitution.

Lemma 4.2.1. For appropriate input:

• w: (È�É-Ty ,,) ≤ ÈwTy: (�)É
w: (-,,)
Ty ,

• w:+1(ÈDÉ-Tm ,,) ≤ ÈwTm: (D)Éw: (-,,)
Tm ,

• w:+1(cod(ÈDÉ-Tm),,) ≤ cod(ÈwTm: (D)Éw: (-,,)
Tm).

Proof. One starts by showing that if both sides are indeed defined, the first two
equalities hold. This is done by a mutual induction on raw syntax.

Only then, we deal with the implication part of ≤ which is done again
by a mutual induction on raw syntax for the first two, while the third is a
direct consequence of the second and the observation in Definition 3.2.5. This
approach allows us to break up the mutual induction in two steps.

Both proofs are straightforward apart from the variable case and making
sure the induction hypotheses is used correctly. Any difficulty in the variable
cases is taken care of by Lemma 3.2.15. �

Remark 4.2.2. We note that in the current version of the formalization we start
by proving the case : = 0 first and build up the remaining cases only up to
: ≤ 3. However, the presented proof is more general.

Due to the definition of syntactic substitution we need to know how to
interpret wMor+(−).

Corollary 4.2.3. For appropriate input

• ÈXÉ-,. ◦ p/ ≤ ÈwMor0(X)É/,. ,

• q: (ÈXÉ-,. ,,) ≤
�
wMor+: (X)

�(ÈXÉ-,.)∗:, ,, .

Proof. One needs the first one result in order to show the second one, due to
the definition of wMor+(X), but both are straightforward. �

As a consequence we find that the interpretation of identity morphisms are
as one would expect.

Corollary 4.2.4. For - ∈ ObC(=) we have

Èid=É-,- ' id- .

80 4.2. Totality

Proof. By induction on =. The base case follows, as the interpretation of ! is
always defined. The step case follows by the definition of id=+1 and the previous
corollary. �

In fact, we can do better and extend this to the context morphisms used for
syntactic term substitution. It is formalized only up to the point necessary for
our results, but can be easily extended.
Corollary 4.2.5. For appropriate input we have

Èid=, C0, . . . , C?−1Éft? . ,.
CtxMor ≥ q?−1(ÈC0Éft? .

Tm , .) ◦ · · · ◦

q0(ÈC?−1Éft? .
Tm , .

[
ÈC0Éft? .

Tm , . . . , ÈC?−2Éft? .
Tm

]
).

Proof. One builds it up starting at ? = 1 and using the equations satisfied by q
in Definition 3.1.5. �

Substitution
We are now able to link semantic and syntactic substitution.
Lemma 4.2.6. For : ≤ 3 and appropriate input

• (ÈXÉ-,.)∗:+1È�É, ≤
�
�[wMor+: (X)]

�(ÈXÉ-,.)∗:, ,

• (ÈXÉ-,.)∗:+1ÈDÉ, ≤
�
D[wMor+: (X)]

�(ÈXÉ-,.)∗:, ,

• (ÈXÉ-,.)∗:+1(cod(ÈDÉ,)) ≤ cod(
�
D[wMor+: (X)]

�(ÈXÉ-,.)∗:,).
Proof. One starts by showing the case : = 0 which is done in a similar fashion
to the case for weakening. The variable cases are again the most difficult and
taken care of by Lemma 3.2.13. The cases for : > 0 are built up from this,
using Corollary 4.2.3. �

The case for term substitution also agrees between syntax and semantics.
Corollary 4.2.7. For ? ≤ 3 and appropriate input we have

• È�É-Ty

[
ÈC0Éft? -

, . . . , ÈC?−1Éft? -
]
≤ È�[C0, . . . , C?−1]Éft? - ,

• ÈDÉ-Tm

[
ÈC0Éft? -

, . . . , ÈC?−1Éft? -
]
≤ ÈD[C0, . . . , C?−1]Éft? - .

Proof. Using Lemma 4.2.6 and Corollary 4.2.5. �

Additionally, we can also show the link between syntactic and semantic
composition.
Corollary 4.2.8. For appropriate input we have

ÈXÉ-,. ◦ È\É/,- ≤ ÈX[\]É/,. . �

4. Initiality 81

Well-formed syntax
We will now show the promised result that the interpretation of well-formed
syntax is defined and moreover that it preserves judgmental equality. This will
finish up all the preparation to prove the initiality theorem.

Theorem 4.2.9. For a context Γ ∈ Ctx(=) such that ÈΓÉ ↓ the following hold:

• If Γ ` � then È�ÉÈΓÉ ↓.

• If Γ ` D : � then ÈDÉÈΓÉ ↓.

• If Γ ` D : �, È�ÉÈΓÉ ↓ and ÈDÉÈΓÉ ↓ then cod(ÈDÉÈΓÉ) = È�ÉÈΓÉ .

• If Γ ` � ≡ �′, È�ÉÈΓÉ ↓ and È�′ÉÈΓÉ ↓ then

È�ÉÈΓÉ = È�′ÉÈΓÉ .

• If Γ ` D ≡ D′ : �, ÈDÉÈΓÉ ↓ and ÈD′ÉÈΓÉ ↓ then

ÈDÉÈΓÉ = ÈD′ÉÈΓÉ .

Proof. All are proven simultaneously by induction on the relevant derivation.
We note that the statements are presented in such a way that the various
induction hypotheses can be used accordingly. �

The above can again be extended to the interpretation of well-formed con-
texts and context morphisms. Both are done by a straightforward structural
induction and using an appropriate presupposition from Lemma 2.3.15.

Corollary 4.2.10. For Γ, Γ′ ∈ Ctx(=) we have

• if ` Γ, then ÈΓÉ ↓.

• if ` Γ ≡ Γ′, then ÈΓÉ = ÈΓ′É.

Corollary 4.2.11. For X, X′ ∈ CtxMor(<, =) and derivable contexts Δ ∈
Ctx(<) and Δ ∈ Ctx(=) we have

• if Δ ` X : Γ, then ÈXÉÈΔÉ,ÈΓÉ ↓,

• if Δ ` X ≡ X′ : Γ, then ÈXÉÈΔÉ,ÈΓÉ = ÈX′ÉÈΔÉ,ÈΓÉ .

82 4.3. The proof of the initiality theorem

4.3 The proof of the initiality theorem
With the results from the previous section, we can define a contextual morphism
C(MLTT) → C. This finishes the first step in the proof of Theorem 4.0.1.

Lemma 4.3.1. There exists a contextual morphism C(MLTT) → C.

Proof. The functor acts on objects by

[Γ] ↦→ ÈΓÉCtx .

This is well-defined by Corollary 4.2.10. It acts on morphism by

[X] ↦→ ÈXÉÈdom(X)É,Ècod(X)É
CtxMor .

This is well-defined by Corollary 4.2.11 and Corollary 4.2.10. It remains to
show that all structure is preserved on the nose. Some of the basic structure
has already been taken care of in the previous section. The remaining struc-
ture, including the ones coming from the logical rules, follows readily. This
relies on the general shape of the additional structure on C(MLTT) defined in
Theorem 3.3.11. For example, given an object [Γ] the functor just defined acts
on the Nat-type structure on C(MLTT) by

NatStr([Γ]) = [Γ,N] ↦→ ÈΓ,NÉCtx = ÈNÉ
ÈΓÉCtx
Ty = NatStr(ÈΓÉCtx).

Similarly, if [id, D] : [Γ] → [Γ,N] is a term morphism in C(MLTT) we find

sucStr([Γ], [id, D]) = [id, suc(D)] ↦→Èid, suc(D)ÉÈΓÉ,ÈΓ,NÉCtxMor

= Èsuc(D)ÉÈΓÉCtx
Tm

= sucStr(ÈΓÉCtx , ÈDÉ
ÈΓÉCtx
Tm)

= sucStr(ÈΓÉCtx , Èid, DÉ
ÈΓÉ,ÈΓ,NÉ
CtxMor)

using Corollary 4.2.5. We refer to the formalization for the details. �

Wewill now continuewith the second step. This only requires the following
lemma.

Lemma 4.3.2. For any two contextual morphism �, � : C(MLTT) → C and
an object [Γ] such that � ([Γ]) = � ([Γ]) we have:

• If Γ ` � then
� ([Γ, �]) = � ([Γ, �]).

4. Initiality 83

• If Γ ` D : � then
� ([id, D]) = � ([id, D]).

where [id, D] : [Γ] → [Γ, �] is as in Example 3.2.4.

Proof. By a mutual induction on the relevant derivation and noting that the
full structure on C(MLTT) is precisely given by objects and morphisms of this
kind, hence � and � preserve them on the nose and the induction hypotheses
takes care of the rest. We highlight two examples. For the N -FORM we find

� ([Γ,N]) = � (NatStr([Γ]))
= NatStr(� ([Γ]))
= NatStr(� ([Γ]))
= � (NatStr([Γ]))
= � ([Γ,N]).

For suc -INTRO we find

� ([id, suc(D)]) = � (sucStr([Γ], [id, D]))
= sucStr(� ([Γ]), � ([id, D]))
= sucStr(� ([Γ]), � ([id, D]))
= � (sucStr([Γ], [id, D]))
= � ([id, suc(D)]). �

The uniqueness now follows without too much effort.

Corollary 4.3.3. Any two contextual morphisms �, � : C(MLTT) → C are
equal.

Proof. By Lemma 3.3.14 we know it is enough to show that � and � agree on
objects and morphisms. This is done by structural induction on contexts and
context morphisms. Objects works without any effort by Lemma 4.3.2. For
morphisms, we can factor

[X, C] = q(pcod(X,C) ◦[X, C], [cod(X), �]) ◦ s[X,C] = q([X], [cod(X), �]) ◦ s[X,C]

by the basic properties of a contextual category and the syntactic equality

(wMor0(id)) [X, C] = id[X] = X.

Since � and � preserve composition, the q operation and objects, the left side
is taken care of by the induction hypotheses. Recall from Lemma 3.1.7 that by
definition s[X,C] = [id, C] and as such the result follows from Lemma 4.3.2. �

84 4.3. The proof of the initiality theorem

Remark 4.3.4. The proofs above are straightforward, but our current formal-
ization fails to type check with a reasonable amount of RAM. This is again due
to the complexity of 3refl. The solution we have implemented to deal with the
term model, Remark 3.3.12, has been sufficient for these files as well. We will
discuss this further once we discus the formalization in the next chapter.

Combining Lemma 4.3.1 and Corollary 4.3.3 results in the proof of the
initiality theorem for MLTT: Theorem 4.0.1.

85

5. Formalization

In this chapter we will discuss various parts of our formalization. We will
discuss how much of Agda we have used and give a general overview of the
files and how the reader can run the formalization on their own system. We will
also touch upon the performance and in particular highlight the current issue
with memory use.

5.1 Agda
The current formalization runs on the development version of Agda, to be pre-
cise version 2.6.1-0c79dd4 (February 29, 2020). In terms of built-in modules
we use:

• Agda.primitive,

• Agda.builtin.Nat,

• Agda.builtin.List,

• Agda.builtin.Bool,

• Agda.builtin.Unit,

• Agda.builtin.String,

• Agda.builtin.Reflection.

We expect only the last of these to require some explanation. Reflection
is a way to generate and type check Agda code automatically1. This is partic-
ular useful for defining function on inductively defined data types that share
a common pattern among most if not all of the inductive clauses. An exam-
ple is our heuristic definition of weakening Definition 2.2.3 and substitution
Definition 2.2.12. At the moment we use reflection only in the development of
syntax, but it is expected to also be useful in other parts of the formalization.

1Documentation on reflection is available at https://Agda.readthedocs.io/en/v2.6.1/
language/reflection.html.

https://github.com/agda/agda/commit/0c79dd4
https://Agda.readthedocs.io/en/v2.6.1/language/reflection.html
https://Agda.readthedocs.io/en/v2.6.1/language/reflection.html

86 5.1. Agda

It is worth noting that one can force Agda to print code generated by reflection
by adjusting the verbosity levels.

The options we use are prop and rewriting. The option prop turns on the
hierarchy of universes of strict propositions as mentioned in the introduction.1
Recall that this is based on [GCST19]. The option rewriting allows the user to
implement new computation rules into Agda. We use it to add the computation
rule for quotients. Built-in Agda features we use are for example implicit
arguments and generalized variables.

We postulate a number of additional axioms.

• Function extensionality,

• Propositional extensionality for types of sProp,

• The formation, introduction, elimination and computation rules for quo-
tient types,

• An operation erase that for % : sProp, takes any element of % and
produces a generic element of % (disregarding any computational content
from the original element). Under the hood, this is implemented using
an unsound assumption, discussed in the following section.

Finally, it is worth noting that for the development we consider the equality
type to be sProp-valued. This type is equivalent to the truncation of the
ordinary identity type (by propositional extensionality). This can be understood
as the formalization only requiring the mere existence of equalities involved.
However, formally verifying that the formalization does not rely on UIP is left
for future investigation.

The erase function
As mentioned above, erase has been a tool for erasing computational content
which would otherwise cause memory issues during type checking. Precisely,
given % : sProp and and G : % it produces an element erase(G) : %, but with the
property that the type checker will no longer inspect the element G in erase(G).
The goal is to keep the propositional content, but erase the computational
content. Note that erase(G) = G even judgmentally by the fact that sProp is a
universe of strict propositions.

Moreover, the use of erase is in line with the philosophy behind a universe
of propositions: inhabitants of propositions should not have computational

1Documentation can be found https://Agda.readthedocs.io/en/v2.6.1/
language/prop.html.

https://Agda.readthedocs.io/en/v2.6.1/language/prop.html
https://Agda.readthedocs.io/en/v2.6.1/language/prop.html

5. Formalization 87

meaning i.e. propositions are proof-irrelevant. In other words, once a propo-
sition is shown to be true, the particular inhabitant should not matter. This
philosophy is emphasized by the implementation of sProp in Agda, where
inhabitants of propositions are shown by an underscore during development
instead of their actual value.

An operation of this type is clearly sound, but to achieve the desired com-
putational result it is implemented by postulating a generic element for any
proposition. It should be clear that the postulation of an inhabitant of any
proposition produces an inconsistent system. However, the author is confident
that the particular implementation of erase and the use of it is safe and justified,
although not formally verified. This is similar to the use of type-in-type in the
UnitMath library.

To be precise about where we use it: erase is used only on the witness of
the derivability of a context or context morphism when constructing objects or
morphisms of the term model. This turns out to save enough memory to allow
Agda to type check the entire formalization.

However, the author still has concerns regarding the need for such an erase
function which demands future investigation both by having a closer look at the
implementation of our formalization, discussions with the developers of Agda
and writers of [GCST19]. Sadly, this was beyond the time available for this
licentiate thesis.

Even with the inclusion of erase, the minimum RAM a station is required
to ensure the entire formalization can be type checked is 25 GB. This has
also been the limit of the RAM available to the author. It is expected that if
enough additional RAM is available, the erase function is no longer required.
However, one of the goals of the formalization was to ensure that it can be
type checked on most personal computers. For that reason the aim for future
development is more towards reducing the total amount of RAM required, and
thus making erase no longer necessary, rather than finding the correct amount
of RAM needed to type check the current version (without erase).

5.2 Outline of the files
In this section we will go through all the files in our repository and briefly
mention their content.

• common.agda: In this file we define most of the basic machinery such
as equality, dependent pairs and finite sets and show some of their prop-
erties. We set the built-in equality of Agda to be sProp-valued. This
allows us to use rewrite with it, which enables some syntactic sugar in the

88 5.2. Outline of the files

development of the syntax.1 This should not be confused with the option
rewriting. This is also the file in which we define the partiality monad
and set up the do-notation which is common for the use of monads.
For details about this presentation of partial operations we refer again to
[Kna18].

• typetheory.agda: Here we define the inductive data types of raw type and
term expressions. When someone is interested in including/excluding
certain constructors, this is the place to start.

• reflection.agda: A technical file to set up the machinery of reflection.
Noticeable functions that are already produced here, are the various
ap - . . . functions for type and term constructions.

• syntx.agda: Here we define contexts and contexts morphisms and the
various operations on syntax. This is also the place we show the syntactic
equalities. Some of the parts in this file are generated by reflection. We
also use the syntactic sugar provided by rewrite at various places. This
could be down without it.

• rules.agda: Here we define judgments, deduction rules and prove the
admissible rules. We have chosen derivability to be sProp-valued. An
alternative would be to define them to be Set-valued and truncate them
only later.

• contextualcat.agda: Here we define contextual categories, the core struc-
ture they possess and verify the semantic equalities. We also define all
the additional structure a contextual category can have related to the
logical rules.

• contextualcatmor.agda: We define the notion of contextual morphisms
between fully structured contextual categories and show two such mor-
phisms are equal if they agree as functors.

• quotients.agda: Here we define our quotient types. We use pathover to
deal with fibred paths over proof-irrelevant equalities. As such, this file
also includes various results about pathover and shows that the quotients
are effective.

• termmodel-common.agda: Here we define the objects and morphisms
of the term model, followed by a couple of helper functions. This is
also the place we postulate (privately) a generic element of any type

1Documentation on rewrite is available at https://agda.readthedocs.io/en/v2.6.1/
language/with-abstraction.html#with-rewrite.

https://agda.readthedocs.io/en/v2.6.1/language/with-abstraction.html#with-rewrite
https://agda.readthedocs.io/en/v2.6.1/language/with-abstraction.html#with-rewrite

5. Formalization 89

in sProp and define the erase function. We use this to then erase the
inhabitant showing a context or context morphism is derivable when
building objects or morphisms. We could have waited with this until the
file termmodel - id.agda, but choice to be uniform in our development of
the term model instead.

• termmodel-synccat.agda: In this file we define the term model and show
that it satisfies the basic structure of a contextual category. Afterwards,
we give a list of lemmas that allows the additional structure on the term
model to be defined in a uniform way. In particular, we set up specialized
quotient eliminators.

• termmodel-*.agda: Replacing the * with any of the type constructor
gives the file in which the additional structure related to this type is
defined.

• termmodel-id.agda and termmodel-id2.agda: We highlight these partic-
ular files for the explicit need of erase. Even with erase, we are forced
to split up this definition into two files.

• termmodel.agda: Here we group all of the constructors together and
show that the term model is fully structured.

• partialinterpretation.agda: We define the partially interpretation func-
tion. The use of the partiality monad and do-notation allows one to read
this definition intuitively.

• interpretationweakening.agda: Here we deal with the interpretation of
weakening and show that the interpretation matches with the semantics.

• interpretationsubstitution.agda: Here we deal with the interpretation of
substitution and show that the interpretation matches with the semantics.

• totality.agda: Combining the previous files we manage to show that the
partial interpretation function is defined on well-formed syntax.

• initiality-existence.agda: We define the functor out of the term model
into any other fully structured contextual category.

• initiality-uniqueness.agda: We show that any two functors from the term
model into any other fully structured contextual category are equal.

90 5.3. On running the formalization yourself

5.3 On running the formalization yourself
We will now describe the steps required for anyone interested in running the
formalization on their own station. Be aware that to guarantee the entire
formalization can be type checked, the system is required to have at least 25
GB of RAM available. The bottle neck is the file initiality - uniqueness.agda.

• First, one needs to install the development version of Agda. Instruction
can be found at the bottomof https://agda.readthedocs.io/en/v2.6.1/getting-
started/installation.html. The formalization runs on version 2.6.1-0c79dd4
(February 29, 2020).

• Then, one should clone the github repository of our formalization. The
repository is found at https://github.com/guillaumebrunerie/initiality and
the particular commit this thesis is based is commit 17c2477 (March 27,
2020).

• When runningAgda on the formalization via terminal, it is recommended
to run it including the options:

+RTS -M25G -RTS

This ensures that Agda will not use more than 25 GB of RAM. In case
the user works on a station that has more RAM, change the number 25
accordingly. If these restrictions are not used, we have experienced that
Agda can crash the system.
Similarly, if the user is planning to work with Emacs, it is recommended
to include the following line as a custom-set-variables in their .emacs
file:

’(agda2-program-args (quote ("+RTS" "-M25G" "-RTS"))).

• Now, one should be ready to let Agda type check the formalization either
via terminal or opening Emacs. It should be pointed out not to immedi-
ately runAgda on initiality - existence.agda or initiality - uniqueness.agda.
Agda will then rightfully type check all of the other files they depends on
first, but it will not garbage collect the memory each time it is finished
with a particular file. However, once a particular file has been success-
fully checked by Agda separately beforehand, it does not need to check
it again when starting a file that depends on it.
Because of this we advice the reader to type check the file termmodel -
synccat.agda first, which should take at most 5 minutes. After this
the files termmodel - id.agda and termmodel - id2.agda can be checked in

https://agda.readthedocs.io/en/v2.6.1/getting-started/installation.html
https://agda.readthedocs.io/en/v2.6.1/getting-started/installation.html
https://github.com/agda/agda/commit/0c79dd4
https://github.com/guillaumebrunerie/initiality
https://github.com/guillaumebrunerie/initiality/tree/17c2477acfa610501269d925f8f44f6fc5cc0781

5. Formalization 91

that order, taking about 35 minutes and 10 minutes, respectively. Then,
termmodel.agda and totality.agda can be checked, both taking roughly 10
minutes. Finally, one can check initiality - existence.agda and initiality -
uniqueness.agda. The former takes about 10 minutes, while the latter
takes at most 40 minutes.

92 5.3. On running the formalization yourself

93

6. Future Directions

We end this thesis by listing a few directions of potential future research related
to this thesis.

Formalize results depending on initiality
There are already a number of results in the literature that rely on the initiality
theorem. Now that there is a formalized proof of initiality, it might be more
tempting to formalize any one of these results as well. A prime example would
be specific models of interest such as constructing cubical sets as a contextual
category.

Extending or changing the type theory
We currently have a proof for the initiality theorem for the system we called
MLTT. However, it is not uncommon to be interested in slightly different
systems, either having different type constructors or different axioms. For
instance, one might want to add ,-types and univalence or remove certain [
rules.

It would be a nice feature if the formalization has a way to ‘turn off’
certain type constructors and allow for easily adding new ones. At the moment,
the first can be done by going through all the files and commenting out all
the occurrences of a particular constructor, while the second can be done by
adding the type constructor to the file typetheory.agda and going through the
rest of the files to add the required extensions. However, the moment one file is
altered, any other file that depends on it will start to rightfully complain when
type checking. So, when adding additional constructors to the formalization,
one can no longer run the final initiality file until the change has been pushed
through in its entirety.

Initiality is a result that is well-suited with the philosophy of building up the
type theory one constructor at a time. If this could be reflected in the way the
files are set up, e.g. even when extending the type theory the initiality file still
type-checks for the smaller theory, that would be a great improvement. In the
same vein, one would like each of the constructors to have its own file, which
includes all the steps in the proof of initiality for that particular constructor.

94

The author is currently unaware if it is possible to set up anything of that
kind in a proof assistant like Agda.

Automatization
A lot of the constructions are independent of a given type constructor, modulo
maybe a few places where one needs to address its particular characteristics. It
would be excellent if, whenever one adds a new constructor to the theory, most
if not all of the generic code that is required is generated automatically. As
mentioned in the previous chapter, we are currently applying a feature of Agda
called reflection for some of the definition and lemmas about syntax. This has
been working out excellently and it would be interesting to see how far one can
go using this.

Changing the categorical semantics
For our categorical semantics, we have used contextual categories. However, in
the literature various other categorical structures have been studied for this pur-
pose. It would be an interesting investigation to observe benefits and downsides
of proving the initiality theorem for any of these other semantics by formalizing
them.

As mentioned in the introduction, in the current project from which our
formalization stems, a second formalization is being developed by Peter LeFanu
Lumsdaine and Anders Mörtberg. They have chosen COQ as a proof assistant
and category with attributes as categorical semantics. It will be interesting to
observe the kind of differences and similarities they encounter.

References

[AAD07] Andreas Abel, Klaus Aehlig, and Peter Dybjer, Normalization by evaluation for martin-löf type
theory with one universe, Electronic Notes in Theoretical Computer Science 173 (2007), 17–39,
Proceedings of the 23rd Conference on theMathematical Foundations of Programming Semantics
(MFPS XXIII). 23

[AL19] Benedikt Ahrens and Peter LeFanu Lumsdaine, Displayed categories, Log. Methods Comput.
Sci. 15 (2019), no. 1, Paper No. 20, 18. 17

[ALV18] Benedikt Ahrens, Peter LeFanu Lumsdaine, and Vladimir Voevodsky, Categorical structures for
type theory in univalent foundations, Log. Methods Comput. Sci. 14 (2018), no. 3, Paper No. 18,
18. 16

[Bar12] BrunoBarras, Semantical investigations in intuitionistic set theory and type theories with inductive
families, Habilitation thesis, Université Paris 7 (2012).

[Ber18] Benno van den Berg, Path categories and propositional identity types, ACM Transactions on
Computational Logic (TOCL) 19 (2018), no. 2, 1–32. 52

[BGL+16] Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Mike Shulman, Matthieu Sozeau, and
Bas Spitters, The HoTT Library: A formalization of homotopy type theory in Coq, preprint (2016),
arXiv:1610.04591. 13

[Car86] John Cartmell, Generalised algebraic theories and contextual categories, Ann. Pure Appl. Logic
32 (1986), no. 3, 209–243. 49, 50

[Cas14] Simon Castellan, Dependent type theory as the initial category with families, Internship Report,
Chalmers University of Technology (2014). 16

[CGH14] Pierre-Louis Curien, Richard Garner, and Martin Hofmann, Revisiting the categorical interpre-
tation of dependent type theory, Theoretical Computer Science 546 (2014), 99–119. 75

[CH88] Thierry Coquand and Gérard Huet, The Calculus of Constructions, Information and Computation
76 (1988), no. 2, 95–120. 19

[Cur93] Pierre-Louis Curien, Substitution up to isomorphism, Fund. Inform. 19 (1993), no. 1–2, 51–85.
75

[dB73] Nicolaas Govert de Bruĳn, AUTOMATH, a language for mathematics, Les Presses de l’Université
de Montréal, Montreal, Que., 1973, Séminaire deMathématiques Supérieures, No. 52 (Été 1971).
13

[GCST19] Gaëtan Gilbert, Jesper Cockx, Matthieu Sozeau, and Nicolas Tabareau, Definitional Proof-
Irrelevance without K, Proceedings of the ACM on Programming Languages (2019), 1–28. 19,
86, 87

[Hof95] Martin Hofmann, On the interpretation of type theory in locally Cartesian closed categories,
Computer science logic (Kazimierz, 1994), Lecture Notes in Comput. Sci., vol. 933, Springer,
Berlin, 1995, pp. 427–441.

http://arxiv.org/abs/1610.04591

[Hof97] , Extensional constructs in intensional type theory, CPHC/BCS Distinguished Disserta-
tions, Springer-Verlag London, Ltd., London, 1997. 16, 55, 56, 62, 63, 75, 78

[Jac99] Bart Jacobs, Categorical logic and type theory, Studies in Logic and the Foundations of Mathe-
matics, vol. 141, North-Holland Publishing Co., Amsterdam, 1999.

[KL18] Krzysztof Kapulkin and Peter LeFanu Lumsdaine, The homotopy theory of type theories, Adv.
Math. 337 (2018), 1–38.

[KL20] , The simplicial model of univalent foundations (after Voevodsky), Journal of the European
Mathematical Society (2020), to appear. 13, 62, 63, 72

[Kna18] Cory Knapp, Partial functions and recursion in univalent type theory, Ph.D. thesis, University of
Birmingham, 2018. 76, 88

[Li15] Nuo Li, Quotient types in type theory, Ph.D. thesis, University of Nottingham, 2015. 19

[Luo94] Zhaohui Luo, Computation and reasoning, vol. 20, Oxford University Press New York, 1994. 40

[Mai99] Maria Emilia Maietti, About effective quotients in constructive type theory, Types for proofs
and programs (Irsee, 1998), Lecture Notes in Comput. Sci., vol. 1657, Springer, Berlin, 1999,
pp. 164–178.

[ML75] PerMartin-Löf, An intuitionistic theory of types: predicative part, Logic Colloquium ’73 (Bristol,
1973), 1975, pp. 73–118. Studies in Logic and the Foundations of Mathematics, Vol. 80. 13, 17

[ML84] , Intuitionistic type theory, Studies in Proof Theory. Lecture Notes, vol. 1, Bibliopolis,
Naples, 1984, Notes by Giovanni Sambin. 13, 17, 21

[NPS90] Bengt Nordström, Kent Petersson, and Jan M. Smith, Programming in Martin-Löf’s type theory,
an introduction, International Series of Monographs on Computer Science, vol. 7, The Clarendon
Press, Oxford University Press, New York, 1990, An introduction. MR 1243882

[PV07] Erik Palmgren and Steve J. Vickers, Partial horn logic and Cartesian categories, Ann. Pure Appl.
Logic 145 (2007), no. 3, 314–353.

[Str91] Thomas Streicher, Semantics of type theory, Progress in Theoretical Computer Science,
Birkhäuser Basel, 1991. 14, 16, 49, 75

[Uem19] Taichi Uemura, A General Framework for the Semantics of Type Theory, preprint (2019),
arXiv:1904.04097. 15

[UFP13] The Univalent Foundations Program, Homotopy type theory — univalent foundations of mathe-
matics, The Univalent Foundations Program, Princeton, NJ; Institute for Advanced Study (IAS),
Princeton, NJ, 2013. 13, 15, 17, 19, 38

[VAG+] Vladimir Voevodsky, Benedikt Ahrens, Daniel Grayson, et al., UniMath — a computer-checked
library of univalent mathematics, available at https://github.com/UniMath/UniMath. 13

[Vel15] Niccolò Veltri, Two set-based implementations of quotients in type theory, Proceedings of the
14th Symposium on Programming Languages and Software Tools (SPLST’15), Tampere, Finland,
October 9-10, 2015, CEURWorkshop Proceedings, vol. 1525, CEUR-WS.org, 2015, pp. 194–205.
19

[Voe06] Vladimir Voevodsky, A very short note on the homotopy _-calculus, Unpublished note,
https://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_cur-
rent.pdf (2006). 13

[Voe09] , Notes on type systems, Unpublished notes, https://www.math.ias.edu/~dgrayson/
Voevodsky-old-files/files/files-annotated/Dropbox/Unfinished_papers/Dynamic_logic/Stage_9_-
2012_09_01/expressions_current.pdf (2009).

http://arxiv.org/abs/1904.04097
https://github.com/UniMath/UniMath
https://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
https://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf
https://www.math.ias.edu/~dgrayson/Voevodsky-old-files/files/files-annotated/Dropbox/Unfinished_papers/Dynamic_logic/Stage_9_2012_09_01/expressions_current.pdf
https://www.math.ias.edu/~dgrayson/Voevodsky-old-files/files/files-annotated/Dropbox/Unfinished_papers/Dynamic_logic/Stage_9_2012_09_01/expressions_current.pdf
https://www.math.ias.edu/~dgrayson/Voevodsky-old-files/files/files-annotated/Dropbox/Unfinished_papers/Dynamic_logic/Stage_9_2012_09_01/expressions_current.pdf

[Voe14] Vladimir Voevodsky, C-system of a module over a monad on sets, preprint (2014),
arXiv:1407.3394. 49

[Voe15] Vladimir Voevodsky, A C-system defined by a universe category, Theory Appl. Categ. 30 (2015),
Paper No. 37, 1181–1215. 49, 50

[Voe16] , Subsystems and regular quotients of C-systems, A panorama of mathematics: pure and
applied, Contemp. Math., vol. 658, Amer. Math. Soc., Providence, RI, 2016, pp. 127–137. 49,
54, 55, 56, 58

[Yam17] Norihiro Yamada, Categories with Dependence and Semantics of Dependent Types, preprint
(2017), arXiv:1704.04747. 16, 75

http://arxiv.org/abs/1407.3394
http://arxiv.org/abs/1704.04747

Index of Symbols

- [D], 56
[\] ◦ [X], 48
CtxMor(<, =), 24
Ctx(=), 24
Γ ∼Ctx Γ

′, 47
X ∼CtxMor X

′, 47
ObC (=), 49
TmExpr(=), 22
TyExpr(=), 22
_ += _, 18
cod(X), 47
dom(X), 47
ft - , 49
Ty; (-), 57
Γ; , 28
id[Γ] , 48
insertCtxMor: (X, �), 29
Partial - , 75
p- , 49
pt, 49
q(5 , -), 49
_, 49
s 5 , 50
x; (-), 57
wMor+(X), 28
wMor: (X), 28
wCtx: (Γ, �), 27
w:+1 (C, .), 56
w: (-,.), 55
wTm: (D), 26
wTy: (�), 26
wVar: (:), 25
5 ∗, 49
5 ∗D, 54
C [D], 56
G ≤ H, 76

G↓, 76
G ' H, 76

�[X], 29
: [X], 29
D[X], 29

ÈDÉ-Tm, 76
È�É-Ty, 76
ÈXÉ-,.CtxMor, 78
ÈΓÉCtx, 78

Δ ` X : Γ, 39
Δ ` X ≡ X : ��, 39
Γ ` � ≡ �, 35
Γ ` �, 35
Γ ` D : �, 35
Γ ` D ≡ E : �, 35
` Γ, 39
` Γ ≡ Γ′, 39

[−], 19
5 , 19
∼, 19
-/∼, 19

inl(�, �, 0), 23
inr(�, �, 1), 23
match(�, �, %, 3inl, 3inr, D), 23
El8 (E), 23
empty_elim(%, D), 23
J(�, %, 3refl, D, E, ?), 23
refl(�, 0), 23
zero, 23
ind(%, 3zero, 3suc, D), 23
suc(D), 23
app(�, �, 5 , 0), 23

_(�, �, D), 23
pair(�, �, 0, 1), 23
pr1 (�, �, D), 23
pr2 (�, �, D), 23
n8 , 23
18 , 23
08 , 23
c8 (0, 1), 23
f8 (0, 1), 23
u8 , 23
0 +++ 1, 23
★, 23
unit_elim(%, 3★, D), 23
x; , 23
� +++ �, 23
0, 23
1, 23
Id�(D, E), 23
N, 23
Π��, 23
Σ��, 23
U8 , 23

Index of Terms

erase, 86
prop, 86
rewriting, 86
sProp, 19
MLTT, 36

contextual category, 49
contextual morphism, 72

de Bruĳn indices, 23
derivable context, 47
derivable morphism, 47

effective, 19
empty context, 24

father, 49

hierarchy of universes of strict propositions, 19

judgment, 34

Kleene equality, 76

length of an object, 49

partial elements, 75
partial operation, 76
proof-irrelevant, 87
proposition extensionality, 19

raw
context morphisms, 24
contexts, 24
judgments, 35
term expressions, 22
type expressions, 22

rules
[, 36
admissible, 40
computation, 36
congruence, 36
deduction, 35
elimination, 36
formation, 35
introduction, 35

logical, 35
structural, 35

structural induction, 18
structure

Π-type, 66
Σ-type, 67
Empty-type, 63
full, 71
hierarchy of universes, 69
Id-type, 68
Nat-type, 64
Sum-type, 65
Unit-type, 64

term morphism, 54
term substitution

in objects, 56
in term morphisms, 56
multiple at a time, 56
syntactic, 31

terminal (context) morphism, 25
total substitution

in terms, 29
in types, 29
in variables, 29

type
coproduct/sum, 23
empty, 23
of dependent functions, 23
of dependent pairs, 23
of elements, 23
of identifications, 23
of natural numbers, 23
of the universe at level 8, 23
unit, 23

type/term constructor, 22

variable of the type at position ;, 23

weakening
of context morphisms, 28
of contexts, 27
of objects, 55
of term morphisms, 56
of terms, 26
of types, 26

	Abstract
	Sammanfattning
	Acknowledgements
	1 Introduction
	1.1 Historic overview of initiality
	1.2 Metatheory

	2 Dependent Type Theory
	2.1 Raw syntax
	2.2 Operations on raw syntax
	2.3 Derivations

	3 Contextual Categories
	3.1 Definition of contextual categories
	3.2 Core structure
	3.3 Additional structure from logical rules

	4 Initiality
	4.1 Partial interpretation
	4.2 Totality
	4.3 The proof of the initiality theorem

	5 Formalization
	5.1 Agda
	5.2 Outline of the files
	5.3 On running the formalization yourself

	6 Future Directions
	References
	Index of Symbols
	Index of Terms

