Ändra sökning
Länk till posten
Permanent länk

Direktlänk
de Courcy-Ireland, MatthewORCID iD iconorcid.org/0000-0001-9884-1390
Publikationer (2 of 2) Visa alla publikationer
Kurasov, P., Farooq, O., Ławniczak, M., Bauch, S., Pistol, M.-E., de Courcy-Ireland, M. & Sirko, L. (2025). Families of isospectral and isoscattering quantum graphs. Physical Review Research, 7(2), Article ID L022071.
Öppna denna publikation i ny flik eller fönster >>Families of isospectral and isoscattering quantum graphs
Visa övriga...
2025 (Engelska)Ingår i: Physical Review Research, E-ISSN 2643-1564, Vol. 7, nr 2, artikel-id L022071Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A concept of germ graphs and the 𝑀-function formalism are employed to construct large families of isospectral and isoscattering graphs. This approach represents a complete departure from the original approach pioneered by Sunada, where isospectral graphs are obtained as quotients of a certain large symmetric graph. Using the 𝑀-function formalism and the symmetries of the graph itself we construct isospectral and isoscattering pairs. In our approach isospectral pairs do not need to be embedded into a larger symmetric graph as in Sunada's approach. We demonstrate that the introduced formalism can also be extended to graphs with dissipation. The theoretical predictions are validated experimentally using microwave networks emulating open quantum graphs with dissipation.

Nationell ämneskategori
Statistik, fysik och komplexa system
Identifikatorer
urn:nbn:se:su:diva-249401 (URN)10.1103/6yk9-17y3 (DOI)001517300200011 ()
Tillgänglig från: 2025-11-12 Skapad: 2025-11-12 Senast uppdaterad: 2025-11-12Bibliografiskt granskad
Courcy-Ireland, M. d., Dostert, M. & Viazovska, M. (2024). Six-dimensional sphere packing and linear programming. Mathematics of Computation, 93(350), 1993-2029
Öppna denna publikation i ny flik eller fönster >>Six-dimensional sphere packing and linear programming
2024 (Engelska)Ingår i: Mathematics of Computation, ISSN 0025-5718, E-ISSN 1088-6842, Vol. 93, nr 350, s. 1993-2029Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We prove that the Cohn-Elkies linear programming bound for sphere packing is not sharp in dimension 6. The proof uses duality and optimization over a space of modular forms, generalizing a construction of Cohn- Triantafillou [Math. Comp. 91 (2021), pp. 491-508] to the case of odd weight and non-trivial character.

Nationell ämneskategori
Matematisk analys
Identifikatorer
urn:nbn:se:su:diva-228122 (URN)10.1090/mcom/3959 (DOI)001187577800001 ()
Tillgänglig från: 2024-04-10 Skapad: 2024-04-10 Senast uppdaterad: 2024-09-09Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-9884-1390

Sök vidare i DiVA

Visa alla publikationer