Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Alternativa namn
Publikationer (10 of 17) Visa alla publikationer
de Mello, N. P., Berger, M. T., Lagerborg, K. A., Yan, Y., Wettmarshausen, J., Keipert, S., . . . Dyar, K. A. (2025). Pervasive glycative stress links metabolic imbalance and muscle atrophy in early-onset Parkinson's disease. Molecular Metabolism, 97, Article ID 102163.
Öppna denna publikation i ny flik eller fönster >>Pervasive glycative stress links metabolic imbalance and muscle atrophy in early-onset Parkinson's disease
Visa övriga...
2025 (Engelska)Ingår i: Molecular Metabolism, ISSN 2212-8778, Vol. 97, artikel-id 102163Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Objective: Parkinson’s disease (PD) is recognized as a systemic condition, with clinical features potentially modifiable by dietary intervention. Diets high in saturated fats and refined sugars significantly increase PD risk and exacerbate motor and non-motor symptoms, yet precise metabolic mechanisms are unclear. Our objective here was to investigate the interplay between diet and PD-associated phenotypes from a metabolic perspective.

Methods: We explored PARK7 KO mice under chronic glycative stress induced by prolonged high-fat high-sucrose (HFHS) diet. We investigated metabolic consequences by combining classical metabolic phenotyping (body composition, glucose tolerance, indirect calorimetry, functional assays of isolated mitochondria) with metabolomics profiling of biospecimens from mice and PD patients.

Results: We found this obesogenic diet drives loss of fat and muscle mass in early-onset PD mice, with a selective vulnerability of glycolytic myofibers. We show that PD mice and early-onset familial PD patients are under pervasive glycative stress with pathological accumulation of advanced glycation end products (AGEs), including N-α-glycerinylarginine (α-GR) and N-α-glycerinyllysine (α-GK), two previously unknown glycerinyl-AGE markers.

Conclusions: Our results offer the first proof for a direct link between diet, accumulation of AGEs and genetics of PD. We also expand the repertoire of clinically-relevant glycative stress biomarkers to potentially define at-risk patients before neurological or metabolic symptoms arise, and/or to monitor disease onset, progression, and effects of interventions.

Nyckelord
Advanced glycation endproducts (AGEs), Biomarkers, Glycative stress, Glycobiology, Muscle atrophy, Parkinson's disease
Nationell ämneskategori
Neurologi
Identifikatorer
urn:nbn:se:su:diva-245021 (URN)10.1016/j.molmet.2025.102163 (DOI)001498383100001 ()40345387 (PubMedID)2-s2.0-105005470061 (Scopus ID)
Tillgänglig från: 2025-09-12 Skapad: 2025-09-12 Senast uppdaterad: 2025-09-12Bibliografiskt granskad
Ziqubu, K., Dludla, P. V., Mabhida, S. E., Jack, B. U., Keipert, S., Jastroch, M. & Mazibuko-Mbeje, S. E. (2024). Brown adipose tissue-derived metabolites and their role in regulating metabolism. Metabolism: Clinical and Experimental, 150, Article ID 155709.
Öppna denna publikation i ny flik eller fönster >>Brown adipose tissue-derived metabolites and their role in regulating metabolism
Visa övriga...
2024 (Engelska)Ingår i: Metabolism: Clinical and Experimental, ISSN 0026-0495, E-ISSN 1532-8600, Vol. 150, artikel-id 155709Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

The discovery and rejuvenation of metabolically active brown adipose tissue (BAT) in adult humans have offered a new approach to treat obesity and metabolic diseases. Beyond its accomplished role in adaptive thermogenesis, BAT secretes signaling molecules known as “batokines”, which are instrumental in regulating whole-body metabolism via autocrine, paracrine, and endocrine action. In addition to the intrinsic BAT metabolite-oxidizing activity, the endocrine functions of these molecules may help to explain the association between BAT activity and a healthy systemic metabolic profile. Herein, we review the evidence that underscores the significance of BAT-derived metabolites, especially highlighting their role in controlling physiological and metabolic processes involving thermogenesis, substrate metabolism, and other essential biological processes. The conversation extends to their capacity to enhance energy expenditure and mitigate features of obesity and its related metabolic complications. Thus, metabolites derived from BAT may provide new avenues for the discovery of metabolic health-promoting drugs with far-reaching impacts. This review aims to dissect the complexities of the secretory role of BAT in modulating local and systemic metabolism in metabolic health and disease.

Nyckelord
Brown adipose tissue, Batokines, Metabolites, Secretome, Metabolism, Obesity, Metabolic diseases
Nationell ämneskategori
Cell- och molekylärbiologi Endokrinologi och diabetes
Identifikatorer
urn:nbn:se:su:diva-224837 (URN)10.1016/j.metabol.2023.155709 (DOI)001110598400001 ()37866810 (PubMedID)2-s2.0-85175688559 (Scopus ID)
Tillgänglig från: 2023-12-28 Skapad: 2023-12-28 Senast uppdaterad: 2023-12-28Bibliografiskt granskad
Pereira, R. O. & Keipert, S. (2024). Editorial: Role of mitochondrial stress response in metabolic health. Frontiers in Endocrinology, 15, Article ID 1504718.
Öppna denna publikation i ny flik eller fönster >>Editorial: Role of mitochondrial stress response in metabolic health
2024 (Engelska)Ingår i: Frontiers in Endocrinology, E-ISSN 1664-2392, Vol. 15, artikel-id 1504718Artikel i tidskrift, Editorial material (Övrigt vetenskapligt) Published
Nyckelord
FGF21, GDF15, integrated stress response (ISR), metabolic health, mitochondria, mitohormesis, mitokine, MOTS-c
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:su:diva-241684 (URN)10.3389/fendo.2024.1504718 (DOI)001345937900001 ()2-s2.0-85208583280 (Scopus ID)
Tillgänglig från: 2025-04-03 Skapad: 2025-04-03 Senast uppdaterad: 2025-04-03Bibliografiskt granskad
Brunetta, H. S., Jung, A. S., Valdivieso-Rivera, F., de Campos Zani, S. C., Guerra, J., Furino, V. O., . . . Bartelt, A. (2024). IF1 is a cold-regulated switch of ATP synthase hydrolytic activity to support thermogenesis in brown fat. EMBO Journal, 43(21), 4870-4891
Öppna denna publikation i ny flik eller fönster >>IF1 is a cold-regulated switch of ATP synthase hydrolytic activity to support thermogenesis in brown fat
Visa övriga...
2024 (Engelska)Ingår i: EMBO Journal, ISSN 0261-4189, E-ISSN 1460-2075, Vol. 43, nr 21, s. 4870-4891Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

While mechanisms controlling uncoupling protein-1 (UCP1) in thermogenic adipocytes play a pivotal role in non-shivering thermogenesis, it remains unclear whether F1Fo-ATP synthase function is also regulated in brown adipose tissue (BAT). Here, we show that inhibitory factor 1 (IF1, encoded by Atp5if1), an inhibitor of ATP synthase hydrolytic activity, is a critical negative regulator of brown adipocyte energy metabolism. In vivo, IF1 levels are diminished in BAT of cold-adapted mice compared to controls. Additionally, the capacity of ATP synthase to generate mitochondrial membrane potential (MMP) through ATP hydrolysis (the so-called “reverse mode” of ATP synthase) is increased in brown fat. In cultured brown adipocytes, IF1 overexpression results in an inability of mitochondria to sustain the MMP upon adrenergic stimulation, leading to a quiescent-like phenotype in brown adipocytes. In mice, adeno-associated virus-mediated IF1 overexpression in BAT suppresses adrenergic-stimulated thermogenesis and decreases mitochondrial respiration in BAT. Taken together, our work identifies downregulation of IF1 upon cold as a critical event for the facilitation of the reverse mode of ATP synthase as well as to enable energetic adaptation of BAT to effectively support non-shivering thermogenesis.

Nyckelord
Adipocytes, Metabolism, Mitochondria, Thermogenesis, UCP1
Nationell ämneskategori
Molekylärbiologi
Identifikatorer
urn:nbn:se:su:diva-239103 (URN)10.1038/s44318-024-00215-0 (DOI)001314227200009 ()39284909 (PubMedID)2-s2.0-85204009117 (Scopus ID)
Tillgänglig från: 2025-02-07 Skapad: 2025-02-07 Senast uppdaterad: 2025-02-07Bibliografiskt granskad
Keipert, S., Gaudry, M. J., Kutschke, M., Keuper, M., Dela Rosa, M. A. S., Cheng, Y., . . . Jastroch, M. (2024). Two-stage evolution of mammalian adipose tissue thermogenesis. Science, 384(6700), 1111-1117
Öppna denna publikation i ny flik eller fönster >>Two-stage evolution of mammalian adipose tissue thermogenesis
Visa övriga...
2024 (Engelska)Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 384, nr 6700, s. 1111-1117Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials. 

Nationell ämneskategori
Evolutionsbiologi
Identifikatorer
urn:nbn:se:su:diva-231101 (URN)10.1126/science.adg1947 (DOI)38843333 (PubMedID)2-s2.0-85195438772 (Scopus ID)
Tillgänglig från: 2024-06-17 Skapad: 2024-06-17 Senast uppdaterad: 2024-06-17Bibliografiskt granskad
Klein Hazebroek, M., Laterveer, R., Kutschke, M., Ramsak Marceta, V., Barthem, C. S. & Keipert, S. (2023). Hyperphagia of female UCP1-deficient mice blunts anti-obesity effects of FGF21. Scientific Reports, 13(1), Article ID 10288.
Öppna denna publikation i ny flik eller fönster >>Hyperphagia of female UCP1-deficient mice blunts anti-obesity effects of FGF21
Visa övriga...
2023 (Engelska)Ingår i: Scientific Reports, E-ISSN 2045-2322, Vol. 13, nr 1, artikel-id 10288Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Increasing energy expenditure through uncoupling protein 1 (UCP1) activity in thermogenic adipose tissue is widely investigated to correct diet-induced obesity (DIO). Paradoxically, UCP1-deficient male mice are resistant to DIO at room temperature. Recently, we uncovered a key role for fibroblast growth factor 21 (FGF21), a promising drug target for treatment of metabolic disease, in this phenomenon. As the metabolic action of FGF21 is so far understudied in females, we aim to investigate potential sexual dimorphisms. Here, we confirm that male UCP1 KO mice display resistance to DIO in mild cold, without significant changes in metabolic parameters. Surprisingly, females gained the same amount of body fat as WT controls. Molecular regulation was similar between UCP1 KO males and females, with an upregulation of serum FGF21, coinciding with beiging of inguinal white adipose tissue and induced lipid metabolism. While energy expenditure did not display significant differences, UCP1 KO females significantly increased their food intake. Altogether, our results indicate that hyperphagia is likely counteracting the beneficial effects of FGF21 in female mice. This underlines the importance of sex-specific studies in (pre)clinical research for personalized drug development.

Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
urn:nbn:se:su:diva-221146 (URN)10.1038/s41598-023-37264-0 (DOI)001018464000031 ()37355753 (PubMedID)2-s2.0-85162810710 (Scopus ID)
Tillgänglig från: 2023-09-15 Skapad: 2023-09-15 Senast uppdaterad: 2025-07-31Bibliografiskt granskad
Jastroch, M., Keipert, S. & Tschöp, M. H. (2023). Protection from alcohol intoxication: Must be FGF21 to enter [Letter to the editor]. Cell Metabolism, 35(3), 377-379
Öppna denna publikation i ny flik eller fönster >>Protection from alcohol intoxication: Must be FGF21 to enter
2023 (Engelska)Ingår i: Cell Metabolism, ISSN 1550-4131, E-ISSN 1932-7420, Vol. 35, nr 3, s. 377-379Artikel i tidskrift, Letter (Refereegranskat) Published
Abstract [en]

Fibroblast growth factor 21 (FGF21) is generally known as a stress-induced metabolic regulator with enormous therapeutic potential to treat metabolic diseases, but a more specific role of FGF21 concerns physiological handling of alcohol in mammals. In this issue of Cell Metabolism, Choi et al. demonstrate that FGF21 mediates the recovery from alcohol intoxication by directly activating noradrenergic neurons in mice, thus advancing our knowledge on FGF21 biology and further diversifying its therapeutic potential.

Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:su:diva-234889 (URN)10.1016/j.cmet.2023.02.010 (DOI)000972147900001 ()36889276 (PubMedID)2-s2.0-85149686630 (Scopus ID)
Tillgänglig från: 2025-09-12 Skapad: 2025-09-12 Senast uppdaterad: 2025-09-12Bibliografiskt granskad
Cavalieri, R., Klein Hazebroek, M., Cotrim, C. A., Lee, Y., Kunji, E. R. S., Jastroch, M., . . . Crichton, P. G. (2022). Activating ligands of Uncoupling protein 1 identified by rapid membrane protein thermostability shift analysis. Molecular Metabolism, 62, Article ID 101526.
Öppna denna publikation i ny flik eller fönster >>Activating ligands of Uncoupling protein 1 identified by rapid membrane protein thermostability shift analysis
Visa övriga...
2022 (Engelska)Ingår i: Molecular Metabolism, ISSN 2212-8778, Vol. 62, artikel-id 101526Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Objective: Uncoupling protein 1 (UCP1) catalyses mitochondrial proton leak in brown adipose tissue to facilitate nutrient oxidation for heat production, and may combat metabolic disease if activated in humans. During the adrenergic stimulation of brown adipocytes, free fatty acids generated from lipolysis activate UCP1 via an unclear interaction. Here, we set out to characterise activator binding to purified UCP1 to clarify the activation process, discern novel activators and the potential to target UCP1.

Methods: We assessed ligand binding to purified UCP1 by protein thermostability shift analysis, which unlike many conventional approaches can inform on the binding of hydrophobic ligands to membrane proteins. A detailed activator interaction analysis and screening approach was carried out, supported by investigations of UCP1 activity in liposomes, isolated brown fat mitochondria and UCP1 expression-controlled cell lines.

Results: We reveal that fatty acids and other activators influence UCP1 through a specific destabilising interaction, behaving as transport substrates that shift the protein to a less stable conformation of a transport cycle. Through the detection of specific stability shifts in screens, we identify novel activators, including the over-the-counter drug ibuprofen, where ligand analysis indicates that UCP1 has a relatively wide structural specificity for interacting molecules. Ibuprofen successfully induced UCP1 activity in liposomes, isolated brown fat mitochondria and UCP1-expressing HEK293 cells but not in cultured brown adipocytes, suggesting drug delivery differs in each cell type.

Conclusions: These findings clarify the nature of the activator-UCP1 interaction and demonstrate that the targeting of UCP1 in cells by approved drugs is in principle achievable as a therapeutic avenue, but requires variants with more effective delivery in brown adipocytes.

Nyckelord
Ligand binding, Thermal stability assay, Differential scanning fluorimetry, Brown adipose tissue, Proton transport, Energy expenditure, Mitochondrial carrier
Nationell ämneskategori
Cell- och molekylärbiologi
Identifikatorer
urn:nbn:se:su:diva-210301 (URN)10.1016/j.molmet.2022.101526 (DOI)000861054600004 ()35691529 (PubMedID)2-s2.0-85132531588 (Scopus ID)
Tillgänglig från: 2022-10-11 Skapad: 2022-10-11 Senast uppdaterad: 2025-07-31Bibliografiskt granskad
Klein Hazebroek, M. & Keipert, S. (2022). Obesity-resistance of UCP1-deficient mice associates with sustained FGF21 sensitivity in inguinal adipose tissue. Frontiers in Endocrinology, 13, Article ID 909621.
Öppna denna publikation i ny flik eller fönster >>Obesity-resistance of UCP1-deficient mice associates with sustained FGF21 sensitivity in inguinal adipose tissue
2022 (Engelska)Ingår i: Frontiers in Endocrinology, E-ISSN 1664-2392, Vol. 13, artikel-id 909621Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Metabolic diseases represent the major health burden of our modern society. With the need of novel therapeutic approaches, fibroblast growth factor 21 (FGF21) is a promising target, based on metabolic improvements upon FGF21 administration in mice and humans. Endogenous FGF21 serum levels, however, are increased during obesity-related diseases, suggesting the development of FGF21 resistance during obesity and thereby lowering FGF21 efficacy. In uncoupling protein 1 knockout (UCP1 KO) mice, however, elevated endogenous FGF21 levels mediate resistance against diet-induced obesity. Here, we show that after long-term high fat diet feeding (HFD), circulating FGF21 levels become similarly high in obese wildtype and obesity-resistant UCP1 KO mice, suggesting improved FGF21 sensitivity in UCP1 KO mice. To test this hypothesis, we injected FGF21 after long-term HFD and assessed the metabolic and molecular effects. The UCP1 KO mice lost weight directly upon FGF21 administration, whereas body weights of WT mice resisted weight loss in the initial phase of the treatment. The FGF21 treatment induced expression of liver Pck1, a typical FGF21-responsive gene, in both genotypes. In iWAT, FGF21-responsive genes were selectively induced in UCP1 KO mice, strongly associating FGF21-sensitivity in iWAT with healthy body weights. Thus, these data support the concept that FGF21-sensitivity in adipose tissue is key for metabolic improvements during obesogenic diets.

Nyckelord
FGF21 resistance, beige fat, diet induced obesity, beta klotho, browning, FGF21 sensitivity
Nationell ämneskategori
Endokrinologi och diabetes
Identifikatorer
urn:nbn:se:su:diva-209432 (URN)10.3389/fendo.2022.909621 (DOI)000844074800001 ()36034414 (PubMedID)2-s2.0-85136541127 (Scopus ID)
Tillgänglig från: 2022-09-20 Skapad: 2022-09-20 Senast uppdaterad: 2025-07-31Bibliografiskt granskad
Karlina, R., Lutter, D., Miok, V., Fischer, D., Altun, I., Schöttl, T., . . . Ussar, S. (2021). Identification and characterization of distinct brown adipocyte subtypes in C57BL/6J mice. Life Science Alliance, 4(1), Article ID e202000924.
Öppna denna publikation i ny flik eller fönster >>Identification and characterization of distinct brown adipocyte subtypes in C57BL/6J mice
Visa övriga...
2021 (Engelska)Ingår i: Life Science Alliance, E-ISSN 2575-1077, Vol. 4, nr 1, artikel-id e202000924Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Brown adipose tissue (BAT) plays an important role in the regulation of body weight and glucose homeostasis. Although increasing evidence supports white adipose tissue heterogeneity, little is known about heterogeneity within murine BAT. Recently, UCP1 high and low expressing brown adipocytes were identified, but a developmental origin of these subtypes has not been studied. To obtain more insights into brown preadipocyte heterogeneity, we use single-cell RNA sequencing of the BAT stromal vascular fraction of C57/BL6 mice and characterize brown preadipocyte and adipocyte clonal cell lines. Statistical analysis of gene expression profiles from brown preadipocyte and adipocyte clones identify markers distinguishing brown adipocyte subtypes. We confirm the presence of distinct brown adipocyte populations in vivo using the markers EIF5, TCF25, and BIN1. We also demonstrate that loss of Bin1 enhances UCP1 expression and mitochondrial respiration, suggesting that BIN1 marks dormant brown adipocytes. The existence of multiple brown adipocyte subtypes suggests distinct functional properties of BAT depending on its cellular composition, with potentially distinct functions in thermogenesis and the regulation of whole body energy homeostasis.

Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:su:diva-191732 (URN)10.26508/lsa.202000924 (DOI)000614606300014 ()33257475 (PubMedID)
Tillgänglig från: 2021-03-30 Skapad: 2021-03-30 Senast uppdaterad: 2022-02-25Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0002-6618-7379

Sök vidare i DiVA

Visa alla publikationer