Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Vinbladh, Jimmy
Publikationer (10 of 10) Visa alla publikationer
Peschel, J., Busto, D., Plach, M., Bertolino, M., Hoflund, M., Maclot, S., . . . Eng-Johnsson, P. (2022). Attosecond dynamics of multi-channel single photon ionization. Nature Communications, 13(1), Article ID 5205.
Öppna denna publikation i ny flik eller fönster >>Attosecond dynamics of multi-channel single photon ionization
Visa övriga...
2022 (Engelska)Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 13, nr 1, artikel-id 5205Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Photoionization of atoms and molecules is one of the fastest processes in nature. The understanding of the ultrafast temporal dynamics of this process often requires the characterization of the different angular momentum channels over a broad energy range. Using a two-photon interferometry technique based on extreme ultraviolet and infrared ultrashort pulses, we measure the phase and amplitude of the individual angular momentum channels as a function of kinetic energy in the outer-shell photoionization of neon. This allows us to unravel the influence of channel interference as well as the effect of the short-range, Coulomb and centrifugal potentials, on the dynamics of the photoionization process.

Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:su:diva-209782 (URN)10.1038/s41467-022-32780-5 (DOI)000849494300011 ()36057622 (PubMedID)
Tillgänglig från: 2022-09-30 Skapad: 2022-09-30 Senast uppdaterad: 2023-03-28Bibliografiskt granskad
Zapata, F., Vinbladh, J., Ljungdahl, A., Lindroth, E. & Dahlström, J. M. (2022). Relativistic time-dependent configuration-interaction singles method. Physical Review A: covering atomic, molecular, and optical physics and quantum information, 105(1), Article ID 012802.
Öppna denna publikation i ny flik eller fönster >>Relativistic time-dependent configuration-interaction singles method
Visa övriga...
2022 (Engelska)Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, E-ISSN 2469-9934, Vol. 105, nr 1, artikel-id 012802Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In this work, a derivation and implementation of the relativistic time-dependent configuration-interaction singles (RTDCIS) method is presented. Various observables for krypton and xenon atoms obtained by RTDCIS are compared with experimental data and alternative relativistic calculations. This includes energies of occupied orbitals in the Dirac-Fock ground state, Rydberg state energies, Fano resonances, and photoionization cross sections. Diagrammatic many-body perturbation theory, based on the relativistic random phase approximation, is used as a benchmark with excellent agreement between RTDCIS reported at the Tamm-Dancoff level. Results from RTDCIS are computed in the length gauge, where the negative energy states can be omitted with acceptable loss of accuracy. A complex absorbing potential, that is used to remove photoelectrons far from the ion, is implemented as a scalar potential and validated for RTDCIS. The RTDCIS methodology presented here opens for future studies of strong-field processes, such as attosecond transient absorption and high-order harmonic generation, with electron and hole spin dynamics and other relativistic effects described by first principles via the Dirac equation.

Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:su:diva-204030 (URN)10.1103/PhysRevA.105.012802 (DOI)000771583600007 ()2-s2.0-85122561115 (Scopus ID)
Tillgänglig från: 2022-04-19 Skapad: 2022-04-19 Senast uppdaterad: 2022-11-14Bibliografiskt granskad
Vinbladh, J., Dahlström, J. M. & Lindroth, E. (2022). Relativistic Two-Photon Matrix Elements for Attosecond Delays. Atoms, 10(3), Article ID 80.
Öppna denna publikation i ny flik eller fönster >>Relativistic Two-Photon Matrix Elements for Attosecond Delays
2022 (Engelska)Ingår i: Atoms, E-ISSN 2218-2004, Vol. 10, nr 3, artikel-id 80Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The theory of one-photon ionization and two-photon above-threshold ionization is formulated for applications to heavy atoms in attosecond science by using Dirac–Fock formalism. A direct comparison of Wigner–Smith–Eisenbud delays for photoionization is made with delays from the Reconstruction of Attosecond Beating By Interference of Two-photon Transitions (RABBIT) method. Photoionization by an attosecond pulse train, consisting of monochromatic fields in the extreme ultraviolet range, is computed with many-body effects at the level of the relativistic random phase approximation (RRPA). Subsequent absorption and emission processes of infrared laser photons in RABBIT are evaluated by using static ionic potentials as well as asymptotic properties of relativistic Coulomb functions. As expected, light elements, such as argon, show negligible relativistic effects, whereas heavier elements, such a krypton and xenon, exhibit delays that depend on the fine-structure of the ionic target. The relativistic effects are notably close to ionization thresholds and Cooper minima with differences in fine-structure delays predicted to be as large as tens of attoseconds. The separability of relativistic RABBIT delays into a Wigner–Smith–Eisenbud delay and a universal continuum–continuum delay is studied with reasonable separability found for photoelectrons emitted along the laser polarization axis in agreement with prior non-relativistic results.

Nyckelord
attoscience, attophysics, photoionization, above-threshold ionization, Wigner-Smith-Eisenbud delay, Dirac-Fock, RRPA, RABBIT, krypton, xenon
Nationell ämneskategori
Atom- och molekylfysik och optik
Identifikatorer
urn:nbn:se:su:diva-210274 (URN)10.3390/atoms10030080 (DOI)000857381700001 ()2-s2.0-85138713905 (Scopus ID)
Tillgänglig från: 2022-10-12 Skapad: 2022-10-12 Senast uppdaterad: 2022-10-12Bibliografiskt granskad
Saha, S., Vinbladh, J., Sörngård, J., Ljungdahl, A. & Lindroth, E. (2021). Angular anisotropy parameters for photoionization delays. Physical Review A: covering atomic, molecular, and optical physics and quantum information, 104(3), Article ID 033108.
Öppna denna publikation i ny flik eller fönster >>Angular anisotropy parameters for photoionization delays
Visa övriga...
2021 (Engelska)Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, E-ISSN 2469-9934, Vol. 104, nr 3, artikel-id 033108Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Anisotropy parameters describing the angular dependence of the photoionization delay are defined. The formalism is applied to results obtained with the relativistic random phase approximation with exchange for photoionization delay from the outermost s-orbitals in selected rare-gas atoms. Any angular dependence in the Wigner delay is induced here by relativistic effects, while the measurable atomic delay exhibits such a dependence also in the nonrelativistic limit. The contributions to the anisotropy from the different sources are disentangled and discussed. For the heavier rare gases, it is shown that measurements of the delay for electrons ejected in specific angles, relative to, e.g., those ejected along the laser polarization, are directly related here to the Wigner delay. For a considerable range of angles, the contributions from the second photon largely get canceled when the results in different angles are compared, and this angle-relative atomic delay is then close to the corresponding Wigner delay.

Nyckelord
Light-matter interaction, Single- and few-photon ionization & excitation, Ultrafast phenomena
Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:su:diva-197867 (URN)10.1103/PhysRevA.104.033108 (DOI)000700565900001 ()2-s2.0-85115344573 (Scopus ID)
Tillgänglig från: 2021-10-19 Skapad: 2021-10-19 Senast uppdaterad: 2024-04-04Bibliografiskt granskad
Zapata, F., Vinbladh, J., Lindroth, E. & Dahlstrom, J. M. (2021). Implementation and validation of the relativistic transient absorption theory within the dipole approximation. Electronic Structure, 3(1), Article ID 014002.
Öppna denna publikation i ny flik eller fönster >>Implementation and validation of the relativistic transient absorption theory within the dipole approximation
2021 (Engelska)Ingår i: Electronic Structure, E-ISSN 2516-1075, Vol. 3, nr 1, artikel-id 014002Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

A relativistic transient absorption theory is derived, implemented and validated within the dipole approximation based on the time-dependent Dirac equation. In the non-relativistic limit, it is found that the absorption agrees with the well established non-relativistic theory based on the time-dependent Schrodringer equation. Time-dependent simulations have been performed using the Dirac equation and the Schrodinger equation for the hydrogen atom in two different attosecond transient absorption scenarios. These simulations validate the present relativistic theory. The presented work can be seen as a first step in the development of a more general relativistic attosecond transient absorption spectroscopy method for studying heavy atoms, but it also suggests the possibility of studying relativistic effects, such as Zitterbewegung, in the time domain.

Nyckelord
Attosecond transient absorption, time dependent Dirac equation, relativistic velocity, gauge transformation, Zitterbewegung, power in quantum mechanics
Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:su:diva-194542 (URN)10.1088/2516-1075/abe191 (DOI)000645004100003 ()2-s2.0-85106955050 (Scopus ID)
Anmärkning

For corrigendum, see: Felipe Zapata et al 2022 Electron. Struct. 4 029501 DOI: 10.1088/2516-1075/ac646f

Tillgänglig från: 2021-08-03 Skapad: 2021-08-03 Senast uppdaterad: 2022-09-30Bibliografiskt granskad
Zhong, S., Vinbladh, J., Busto, D., Squibb, R. J., Isinger, M., Neoričić, L., . . . L'Huillier, A. (2020). Attosecond electron-spin dynamics in Xe 4d photoionization. Nature Communications, 11(1), Article ID 5042.
Öppna denna publikation i ny flik eller fönster >>Attosecond electron-spin dynamics in Xe 4d photoionization
Visa övriga...
2020 (Engelska)Ingår i: Nature Communications, E-ISSN 2041-1723, Vol. 11, nr 1, artikel-id 5042Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The photoionization of xenon atoms in the 70-100 eV range reveals several fascinating physical phenomena such as a giant resonance induced by the dynamic rearrangement of the electron cloud after photon absorption, an anomalous branching ratio between intermediate Xe+ states separated by the spin-orbit interaction and multiple Auger decay processes. These phenomena have been studied in the past, using in particular synchrotron radiation, but without access to real-time dynamics. Here, we study the dynamics of Xe 4d photoionization on its natural time scale combining attosecond interferometry and coincidence spectroscopy. A time-frequency analysis of the involved transitions allows us to identify two interfering ionization mechanisms: the broad giant dipole resonance with a fast decay time less than 50 as, and a narrow resonance at threshold induced by spin-flip transitions, with much longer decay times of several hundred as. Our results provide insight into the complex electron-spin dynamics of photo-induced phenomena.

Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:su:diva-187615 (URN)10.1038/s41467-020-18847-1 (DOI)000577244600008 ()33028822 (PubMedID)
Tillgänglig från: 2021-01-13 Skapad: 2021-01-13 Senast uppdaterad: 2023-03-28Bibliografiskt granskad
Busto, D., Vinbladh, J., Zhong, S., Isinger, M., Nandi, S., Maclot, S., . . . Dahlström, J. M. (2019). Fano's Propensity Rule in Angle-Resolved Attosecond Pump-Probe Photoionization. Physical Review Letters, 123(13), Article ID 133201.
Öppna denna publikation i ny flik eller fönster >>Fano's Propensity Rule in Angle-Resolved Attosecond Pump-Probe Photoionization
Visa övriga...
2019 (Engelska)Ingår i: Physical Review Letters, ISSN 0031-9007, E-ISSN 1079-7114, Vol. 123, nr 13, artikel-id 133201Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

In a seminal article, Fano predicts that absorption of light occurs preferably with increase of angular momentum. We generalize Fano's propensity rule to laser-assisted photoionization, consisting of absorption of an extreme-ultraviolet photon followed by absorption or emission of an infrared photon. The predicted asymmetry between absorption and emission leads to incomplete quantum interference in attosecond photoelectron interferometry. It explains both the angular dependence of the photoionization time delays and the delay dependence of the photoelectron angular distributions. Our theory is verified by experimental results in Ar in the 20-40 eV range.

Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:su:diva-175058 (URN)10.1103/PhysRevLett.123.133201 (DOI)000487744600004 ()
Tillgänglig från: 2019-10-25 Skapad: 2019-10-25 Senast uppdaterad: 2022-03-23Bibliografiskt granskad
Vinbladh, J., Dahlström, J. M. & Lindroth, E. (2019). Many-body calculations of two-photon, two-color matrix elements for attosecond delays. Physical Review A: covering atomic, molecular, and optical physics and quantum information, 100(4), Article ID 043424.
Öppna denna publikation i ny flik eller fönster >>Many-body calculations of two-photon, two-color matrix elements for attosecond delays
2019 (Engelska)Ingår i: Physical Review A: covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, E-ISSN 2469-9934, Vol. 100, nr 4, artikel-id 043424Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We present calculations for attosecond atomic delays in the photoionization of noble-gas atoms based on the full two-color two-photon random-phase approximation with exchange in both the length and velocity gauge. Gauge-invariant atomic delays are demonstrated for the complete set of diagrams. The results are used to investigate the validity of the common assumption that the measured atomic delays can be interpreted as a one-photon Wigner delay and a universal continuum-continuum contribution that depends only on the kinetic energy of the photoelectron, the laser frequency, and the charge of the remaining ion, but not on the specific atom or the orbital from which the electron is ionized. Here, we find that although effects beyond the universal IR-photoelectron continuum-continuum transitions are rare, they do occur in special cases such as around the 3s Cooper minimum in argon. We conclude also that in general the convergence in terms of many-body diagrams is considerably faster in the length gauge than in the velocity gauge.

Nationell ämneskategori
Fysik
Identifikatorer
urn:nbn:se:su:diva-176731 (URN)10.1103/PhysRevA.100.043424 (DOI)000493458500005 ()2-s2.0-85074773909 (Scopus ID)
Tillgänglig från: 2019-12-11 Skapad: 2019-12-11 Senast uppdaterad: 2022-11-02Bibliografiskt granskad
Vinbladh, J. (2018). Two photon above threshold ionization in a relativistic framework: Attosecond delays in high Z elements. (Licentiate dissertation). Stockholm: Department of Physics, Stockholm University
Öppna denna publikation i ny flik eller fönster >>Two photon above threshold ionization in a relativistic framework: Attosecond delays in high Z elements
2018 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Recent advances in experimental physics opens up for improved time resolution on measurements of ionizing processes in atoms caused by an EM-field. There exist non-relativistic models that describe photo-ionization events involving two photons, for various atoms, where relativistic effects, e.g. spin-orbit interactions, are small. The ambition of this thesis project was to develop a computational software that includes relativistic effects by starting from the Dirac equation. Investigation of the photo-ionization events are done by calculating the two-photon matrix elements, taking into account essential many body effects using Random Phase Approximation with Exchange (RPAE) for the atomic response to the interaction with the first photon. During the development of the software it was discovered that the choice of dipole operator, length or velocity, had a large influence on the results when including the second photon, and it is concluded that the more straightforward calculations are done with the dipole operator in length gauge. The examined results demonstrate a program that works as desired; it agrees well with the non-relativistic calculations for the lighter elements and provides data for more detailed analysis of heavier elements.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Physics, Stockholm University, 2018
Nationell ämneskategori
Atom- och molekylfysik och optik
Forskningsämne
teoretisk fysik
Identifikatorer
urn:nbn:se:su:diva-162690 (URN)
Opponent
Handledare
Tillgänglig från: 2019-06-11 Skapad: 2018-12-07 Senast uppdaterad: 2022-02-26Bibliografiskt granskad
Saha, S., Ljungdahl, A., Petersson, L., Sörngård, J., Vinbladh, J. & Lindroth, E.Photoionization cross sections and delays for resonances between the outermost np3/2 and np1/2 thresholds in xenon and radon.
Öppna denna publikation i ny flik eller fönster >>Photoionization cross sections and delays for resonances between the outermost np3/2 and np1/2 thresholds in xenon and radon
Visa övriga...
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

Photoionization cross sections and delays are calculated within the relativistic random phase approximation with exchange for xenon and radon in the energy region between the first and second ionization threshold. Resonance parameters for the first few resonances in both systems are presented and the angular dependence is discussed.

Nyckelord
photoionization, delay, attosecond, asymmetry parameters, numerical simulation
Nationell ämneskategori
Atom- och molekylfysik och optik
Forskningsämne
teoretisk fysik
Identifikatorer
urn:nbn:se:su:diva-227933 (URN)
Forskningsfinansiär
Vetenskapsrådet, 2020-0331Knut och Alice Wallenbergs Stiftelse, 2017.0104Wenner-Gren StiftelsernaCarl Tryggers stiftelse för vetenskaplig forskning
Tillgänglig från: 2024-04-04 Skapad: 2024-04-04 Senast uppdaterad: 2024-04-05
Organisationer

Sök vidare i DiVA

Visa alla publikationer