Ändra sökning
Länk till posten
Permanent länk

Direktlänk
Alternativa namn
Publikationer (10 of 11) Visa alla publikationer
Gaudry, M. J., Bundgaard, A., Kutschke, M., Ostatek, K., Dela Rosa, M. A. S., Crichton, P. G., . . . Jastroch, M. (2025). Natural Mutation in Naked Mole-Rat UCP1 Refutes Importance of the Histidine Pair Motif for Proton Conductance and Thermogenesis. Acta Physiologica, 241(10), Article ID e70109.
Öppna denna publikation i ny flik eller fönster >>Natural Mutation in Naked Mole-Rat UCP1 Refutes Importance of the Histidine Pair Motif for Proton Conductance and Thermogenesis
Visa övriga...
2025 (Engelska)Ingår i: Acta Physiologica, ISSN 1748-1708, E-ISSN 1748-1716, Vol. 241, nr 10, artikel-id e70109Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Aim: Uncoupling protein 1 (UCP1) is the crucial protein for non-shivering thermogenesis in placental mammals, but the molecular mechanism of thermogenic proton transport is still unknown. Its histidine pair motif (H145 and H147) has been claimed as a critical element for proton translocation, leading to the paradigmatic “cofactor model” of the UCP1 thermogenic mechanism. The histidine pair motif is mutated (H145Q) in the naked mole-rat (NMR, Heterocephalus glaber) UCP1, suggesting disrupted thermogenic function in line with NMR's poor thermoregulatory abilities. Here, we investigated the functionality NMR versus mouse UCP1 to scrutinized the importance of the histidine pair motif. Methods: Respiratory analyses for UCP1 function were performed in isolated brown adipose tissue mitochondria from NMR and mouse. The histidine pair motif of NMR UCP1 was manipulated through mutations, ectopically overexpressed in HEK293 cells and subjected to plate-based respirometry for functional comparison. Results: Isolated BAT mitochondria of NMRs display guanosine diphosphate-sensitive respiration, indicative of thermogenically competent UCP1. Overexpressed wildtype NMR UCP1 demonstrates proton leak activity comparable to mouse UCP1. Neither restoration of the histidine pair motif nor full ablation of the motif through a double mutation affects UCP1-dependent respiration. Conclusions: The UCP1 variant of the NMR, a warm-adapted fossorial species, excludes the histidine pair motif as crucial for UCP1 thermogenic function. Collectively, we show that functional investigation into natural sequence variation of UCP1 not only casts new light on the thermophysiology of NMRs but also represents a powerful tool to delineate structure-function relationships underlying the enigmatic thermogenic proton transport of UCP1.

Nationell ämneskategori
Molekylärbiologi
Identifikatorer
urn:nbn:se:su:diva-247932 (URN)10.1111/apha.70109 (DOI)001582926500003 ()40990116 (PubMedID)2-s2.0-105017042650 (Scopus ID)
Tillgänglig från: 2025-10-22 Skapad: 2025-10-22 Senast uppdaterad: 2025-10-22Bibliografiskt granskad
Khani, S., Topel, H., Kardinal, R., Tavanez, A. R., Josephrajan, A., Larsen, B. D., . . . Kornfeld, J.-W. (2024). Cold-induced expression of a truncated adenylyl cyclase 3 acts as rheostat to brown fat function. Nature Metabolism, 6(6), 1053-1075
Öppna denna publikation i ny flik eller fönster >>Cold-induced expression of a truncated adenylyl cyclase 3 acts as rheostat to brown fat function
Visa övriga...
2024 (Engelska)Ingår i: Nature Metabolism, E-ISSN 2522-5812, Vol. 6, nr 6, s. 1053-1075Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Promoting brown adipose tissue (BAT) activity innovatively targets obesity and metabolic disease. While thermogenic activation of BAT is well understood, the rheostatic regulation of BAT to avoid excessive energy dissipation remains ill-defined. Here, we demonstrate that adenylyl cyclase 3 (AC3) is key for BAT function. We identified a cold-inducible promoter that generates a 5′ truncated AC3 mRNA isoform (Adcy3-at), whose expression is driven by a cold-induced, truncated isoform of PPARGC1A (PPARGC1A-AT). Male mice lacking Adcy3-at display increased energy expenditure and are resistant to obesity and ensuing metabolic imbalances. Mouse and human AC3-AT are retained in the endoplasmic reticulum, unable to translocate to the plasma membrane and lack enzymatic activity. AC3-AT interacts with AC3 and sequesters it in the endoplasmic reticulum, reducing the pool of adenylyl cyclases available for G-protein-mediated cAMP synthesis. Thus, AC3-AT acts as a cold-induced rheostat in BAT, limiting adverse consequences of cAMP activity during chronic BAT activation. 

Nationell ämneskategori
Cell- och molekylärbiologi Endokrinologi och diabetes
Identifikatorer
urn:nbn:se:su:diva-228971 (URN)10.1038/s42255-024-01033-8 (DOI)001209548100001 ()38684889 (PubMedID)2-s2.0-85191850631 (Scopus ID)
Anmärkning

For correction, see Khani, S., Topel, H., Kardinal, R. et al. Publisher Correction: Cold-induced expression of a truncated adenylyl cyclase 3 acts as rheostat to brown fat function. Nat Metab 7, 855 (2025). https://doi.org/10.1038/s42255-025-01292-z

Tillgänglig från: 2024-05-14 Skapad: 2024-05-14 Senast uppdaterad: 2025-05-27Bibliografiskt granskad
Gaudry, M. J., Khudyakov, J., Pirard, L., Debier, C., Crocker, D., Crichton, P. G. & Jastroch, M. (2024). Terrestrial Birth and Body Size Tune UCP1 Functionality in Seals. Molecular biology and evolution, 41(4), Article ID msae075.
Öppna denna publikation i ny flik eller fönster >>Terrestrial Birth and Body Size Tune UCP1 Functionality in Seals
Visa övriga...
2024 (Engelska)Ingår i: Molecular biology and evolution, ISSN 0737-4038, E-ISSN 1537-1719, Vol. 41, nr 4, artikel-id msae075Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

The molecular evolution of the mammalian heater protein UCP1 is a powerful biomarker to understand thermoregulatory strategies during species radiation into extreme climates, such as aquatic life with high thermal conductivity. While fully aquatic mammals lost UCP1, most semiaquatic seals display intact UCP1 genes, apart from large elephant seals. Here, we show that UCP1 thermogenic activity of the small-bodied harbor seal is equally potent compared to terrestrial orthologs, emphasizing its importance for neonatal survival on land. In contrast, elephant seal UCP1 does not display thermogenic activity, not even when translating a repaired or a recently highlighted truncated version. Thus, the thermogenic benefits for neonatal survival during terrestrial birth in semiaquatic pinnipeds maintained evolutionary selection pressure on UCP1 function and were only outweighed by extreme body sizes among elephant seals, fully eliminating UCP1-dependent thermogenesis.

Nyckelord
UCP1, brown adipose tissue, nonshivering thermogenesis, pseudogene, pinniped
Nationell ämneskategori
Evolutionsbiologi
Identifikatorer
urn:nbn:se:su:diva-229018 (URN)10.1093/molbev/msae075 (DOI)001208491100001 ()38606905 (PubMedID)2-s2.0-85191817451 (Scopus ID)
Tillgänglig från: 2024-05-07 Skapad: 2024-05-07 Senast uppdaterad: 2024-11-13Bibliografiskt granskad
Keipert, S., Gaudry, M. J., Kutschke, M., Keuper, M., Dela Rosa, M. A. S., Cheng, Y., . . . Jastroch, M. (2024). Two-stage evolution of mammalian adipose tissue thermogenesis. Science, 384(6700), 1111-1117
Öppna denna publikation i ny flik eller fönster >>Two-stage evolution of mammalian adipose tissue thermogenesis
Visa övriga...
2024 (Engelska)Ingår i: Science, ISSN 0036-8075, E-ISSN 1095-9203, Vol. 384, nr 6700, s. 1111-1117Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Brown adipose tissue (BAT) is a heater organ that expresses thermogenic uncoupling protein 1 (UCP1) to maintain high body temperatures during cold stress. BAT thermogenesis is considered an overarching mammalian trait, but its evolutionary origin is unknown. We show that adipose tissue of marsupials, which diverged from eutherian mammals ~150 million years ago, expresses a nonthermogenic UCP1 variant governed by a partial transcriptomic BAT signature similar to that found in eutherian beige adipose tissue. We found that the reconstructed UCP1 sequence of the common eutherian ancestor displayed typical thermogenic activity, whereas therian ancestor UCP1 is nonthermogenic. Thus, mammalian adipose tissue thermogenesis may have evolved in two distinct stages, with a prethermogenic stage in the common therian ancestor linking UCP1 expression to adipose tissue and thermal stress. We propose that in a second stage, UCP1 acquired its thermogenic function specifically in eutherians, such that the onset of mammalian BAT thermogenesis occurred only after the divergence from marsupials. 

Nationell ämneskategori
Evolutionsbiologi
Identifikatorer
urn:nbn:se:su:diva-231101 (URN)10.1126/science.adg1947 (DOI)38843333 (PubMedID)2-s2.0-85195438772 (Scopus ID)
Tillgänglig från: 2024-06-17 Skapad: 2024-06-17 Senast uppdaterad: 2024-06-17Bibliografiskt granskad
Gaudry, M. J. (2023). Comparative analysis of the thermogenic protein UCP1 across the mammalian phylogeny. (Doctoral dissertation). Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University
Öppna denna publikation i ny flik eller fönster >>Comparative analysis of the thermogenic protein UCP1 across the mammalian phylogeny
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Uncoupling protein 1 (UCP1) drives mitochondrial inefficiency to produce heat in mammalian brown adipose tissue (BAT). Many mammalian species rely on this form of adaptive non-shivering thermogenesis (NST) to defend high body temperatures in the cold. Little is known regarding how evolution may have shaped UCP1 function to reflect distinct thermoregulatory requirements of various lineages. This thesis merges genetic and functional data while using a comparative approach to gain insights into the evolutionary rise of thermogenic UCP1, as well as its repeated loss of function among several eutherian lineages. UCP1 structure-function relationships and mechanistic insights are gained by examining natural mutations among the orthologues of different species.  

In Paper I, we reveal that, like eutherian mammals, marsupial UCP1 is expressed in adipose tissue of developing young gray short-tailed opossums (Monodelphis domestica) and coincides with the onset of thermoregulatory competence. Transcriptomic analyses reveal partial browning signatures in adipose tissue of young opossums, resembling eutherian beige adipose tissue. Overexpression of marsupial UCP1 in a mammalian test system (HEK293 cells), however, reveals its lack of thermogenic functionality. I then performed ancestral reconstruction of UCP1 and demonstrate that the thermogenic function arose in the stem eutherian ancestor. 

In Paper II, I uncover that UCP1 not only became pseudogenized in pigs (e.g. Sus spp.), but in a common ancestor of both pigs and peccaries (e.g. Catagonus wagneri) as indicated from a shared inactivating mutation, re-calibrating the timeline of this inactivation and our understanding of how it may limit the geographic distribution of modern peccaries. 

In Paper III, I uncover a novel UCP1 pseudogene unique to the largest seals, elephant seals (Mirounga spp.), showing that UCP1 is retained within most members of the seal lineage for neonatal defense of body temperatures, but its loss coincides with the extreme body sizes attained by elephant seals. 

In Paper IV, we functionally verify that N-terminal truncation or frameshift mutation repair cannot rescue the thermogenic function of elephant seal UCP1. By contrast, we verify the thermogenic capacity of UCP1 of the small-bodied harbor seal (Phoca vitulina), matching that of terrestrial eutherians.

In Paper V, we examine UCP1 in the naked mole-rat (Heterocephalus glaber), a species that displays a natural mutation to the histidine pair motif that has been previously deemed crucial for UCP1 function. We hypothesized that this may underlie the poor thermoregulatory abilities of the species. Our assessment of UCP1 mutants, however, reveal that the naked mole-rat retains UCP1 function and that the histidine pair motif is unnecessary for the GDP-sensitive thermogenic function of the protein, providing important structure-function information of UCP1 and questioning a proposed mechanistic model. 

In summary, this thesis utilizes UCP1 as a biomarker to trace the evolution of mammalian NST and thermoregulation. Insights gained provide clues to the various factors influencing mammalian endothermy and hints of structure-function relationships in this thermogenic protein.  

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 2023. s. 74
Nyckelord
Uncoupling protein 1, Evolution, Non-shivering thermogenesis, Brown adipose tissue
Nationell ämneskategori
Biologiska vetenskaper
Forskningsämne
molekylär biovetenskap
Identifikatorer
urn:nbn:se:su:diva-223504 (URN)978-91-8014-581-7 (ISBN)978-91-8014-582-4 (ISBN)
Disputation
2023-12-18, Vivi Täckholmssalen (Q211), NPQ-huset, vån 2, Svante Arrhenius väg 20, Stockholm, 10:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2023-11-23 Skapad: 2023-11-01 Senast uppdaterad: 2024-06-17Bibliografiskt granskad
Gaudry, M. J., Fyda, T. J. & Jastroch, M. (2022). Evolution of pinniped UCP1 is not linked to aquatic life but to neonatal thermogenesis and body size [Letter to the editor]. Proceedings of the National Academy of Sciences of the United States of America, 119(6), Article ID e2118431119.
Öppna denna publikation i ny flik eller fönster >>Evolution of pinniped UCP1 is not linked to aquatic life but to neonatal thermogenesis and body size
2022 (Engelska)Ingår i: Proceedings of the National Academy of Sciences of the United States of America, ISSN 0027-8424, E-ISSN 1091-6490, Vol. 119, nr 6, artikel-id e2118431119Artikel i tidskrift, Letter (Övrigt vetenskapligt) Published
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:su:diva-204929 (URN)10.1073/pnas.2118431119 (DOI)000758485500003 ()35101988 (PubMedID)2-s2.0-85123974337 (Scopus ID)
Tillgänglig från: 2022-05-24 Skapad: 2022-05-24 Senast uppdaterad: 2023-11-01Bibliografiskt granskad
Gaudry, M. J. & Jastroch, M. (2021). Comparative functional analyses of UCP1 to unravel evolution, ecophysiology and mechanisms of mammalian thermogenesis. Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology, 255, Article ID 110613.
Öppna denna publikation i ny flik eller fönster >>Comparative functional analyses of UCP1 to unravel evolution, ecophysiology and mechanisms of mammalian thermogenesis
2021 (Engelska)Ingår i: Comparative Biochemistry and Physiology - Part B: Biochemistry & Molecular Biology, ISSN 1096-4959, E-ISSN 1879-1107, Vol. 255, artikel-id 110613Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Brown adipose tissue (BAT), present in many placental mammals, provides adaptive nonshivering thermogenesis (NST) for body temperature regulation and has facilitated survival in diverse thermal niches on our planet. Intriguingly, several key details on the molecular mechanisms of NST and their potential ecophysiological adaptations are still unknown. Comparative studies at the whole animal level are unpragmatic, due to the diversity and complexity of thermoregulation among different species. We propose that the molecular evolution of mitochondrial uncoupling protein 1 (UCP1), a central component for BAT thermogenesis, represents a powerful opportunity to unravel key questions of mammalian thermoregulation. Comparative analysis of UCP1 may elucidate how its thermogenic function arose, how environmental selection has shaped protein function to support ecophysiological requirements, and how the enigmatic molecular mechanism of proton leak is governed. Several approaches for the assessment of UCP1 function in vitro have been introduced over the years. For comparative characterization of UCP1, we put forward the overexpression of UCP1 orthologues and mutated variants in a mammalian cell system as a primary strategy and discuss advantageous aspects in contrast to other experimental systems. In turn, we suggest how remaining experimental caveats can be solved by complimentary test systems before physiological consolidation in the animal model. Furthermore, we highlight the appropriate bioenergetic techniques to perform the functional analyses on UCP1. The comparative characterizations of diverse UCP1 variants may enable key insights into open questions surrounding the molecular basis of NST.

Nyckelord
Uncoupling protein 1, Nonshivering thermogenesis, Functional characterization
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:su:diva-195702 (URN)10.1016/j.cbpb.2021.110613 (DOI)000655511800020 ()33971349 (PubMedID)
Tillgänglig från: 2021-08-25 Skapad: 2021-08-25 Senast uppdaterad: 2022-02-25Bibliografiskt granskad
Jastroch, M., Polymeropoulos, E. T. & Gaudry, M. J. (2021). Pros and cons for the evidence of adaptive non-shivering thermogenesis in marsupials. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 191(6), 1085-1095
Öppna denna publikation i ny flik eller fönster >>Pros and cons for the evidence of adaptive non-shivering thermogenesis in marsupials
2021 (Engelska)Ingår i: Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, ISSN 0174-1578, E-ISSN 1432-136X, Vol. 191, nr 6, s. 1085-1095Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

The thermogenic mechanisms supporting endothermy are still not fully understood in all major mammalian subgroups. In placental mammals, brown adipose tissue currently represents the most accepted source of adaptive non-shivering thermogenesis. Its mitochondrial protein UCP1 (uncoupling protein 1) catalyzes heat production, but the conservation of this mechanism is unclear in non-placental mammals and lost in some placentals. Here, we review the evidence for and against adaptive non-shivering thermogenesis in marsupials, which diverged from placentals about 120-160 million years ago. We critically discuss potential mechanisms that may be involved in the heat-generating process among marsupials.

Nyckelord
Marsupials, Adaptive non-shivering thermogenesis, Brown adipose tissue, Endothermy
Nationell ämneskategori
Cell- och molekylärbiologi Biologiska vetenskaper
Identifikatorer
urn:nbn:se:su:diva-194152 (URN)10.1007/s00360-021-01362-0 (DOI)000640467800001 ()33860348 (PubMedID)
Tillgänglig från: 2021-06-14 Skapad: 2021-06-14 Senast uppdaterad: 2022-02-25Bibliografiskt granskad
Fyda, T. J., Spencer, C., Jastroch, M. & Gaudry, M. J. (2020). Disruption of thermogenic UCP1 predated the divergence of pigs and peccaries. Journal of Experimental Biology, 223(15), Article ID jeb223974.
Öppna denna publikation i ny flik eller fönster >>Disruption of thermogenic UCP1 predated the divergence of pigs and peccaries
2020 (Engelska)Ingår i: Journal of Experimental Biology, ISSN 0022-0949, E-ISSN 1477-9145, Vol. 223, nr 15, artikel-id jeb223974Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Uncoupling protein 1 (UCP1) governs non-shivering thermogenesis in brown adipose tissue. It has been estimated that pigs lost UCP1 similar to 20 million years ago (MYA), dictating cold intolerance among piglets. Our current understanding of the root causes of UCP1 loss are, however, incomplete. Thus, examination of additional species can shed light on these fundamental evolutionary questions. Here, we investigated UCP1 in the Chacoan peccary (Catagonus wagneri), a member of the Tayassuid lineage that diverged from pigs during the late Eocene-mid Oligocene. Exons 1 and 2 have been deleted in peccary UCP1 and the remaining exons display additional inactivating mutations. A common nonsense mutation in exon 6 revealed that UCP1 was pseudogenized in a shared ancestor of pigs and peccaries. Our selection pressure analyses indicate that the inactivation occurred 36.2-44.3 MYA during the mid-late Eocene, which is much earlier than previously thought. Importantly, pseudogenized UCP1 provides the molecular rationale for cold sensitivity and current tropical biogeography of extant peccaries.

Nyckelord
Uncoupling protein 1, Endothermy, Evolution, Brown adipose tissue
Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:su:diva-187707 (URN)10.1242/jeb.223974 (DOI)000576694000016 ()32620708 (PubMedID)
Tillgänglig från: 2020-12-17 Skapad: 2020-12-17 Senast uppdaterad: 2023-11-01Bibliografiskt granskad
Gaudry, M. J., Keuper, M. & Jastroch, M. (2019). Molecular evolution of thermogenic uncoupling protein 1 and implications for medical intervention of human disease. Molecular Aspects of Medicine, 68, 6-17
Öppna denna publikation i ny flik eller fönster >>Molecular evolution of thermogenic uncoupling protein 1 and implications for medical intervention of human disease
2019 (Engelska)Ingår i: Molecular Aspects of Medicine, ISSN 0098-2997, E-ISSN 1872-9452, Vol. 68, s. 6-17Artikel, forskningsöversikt (Refereegranskat) Published
Abstract [en]

In eutherian mammals, brown adipose tissue (BAT) permits non-shivering thermogenesis (NST) through high metabolic rates catalyzed by the unique mitochondrial uncoupling protein 1 (UCP1). The tissue has recently gained remarkable attention due to its discovery in adult humans. Approaching BAT and UCP1 as therapeutic targets to combust surplus energy bares high potential to combat the epidemic of the metabolic syndrome that has precipitated in our society as a result of our modern lifestyles. Our understanding of the physiological and molecular control of BAT may benefit tremendously from consideration of its evolution that basically outlines the blueprint of how to construct a fat burning tissue. Here, we discuss the evolutionary history of UCP1 and BAT, from its origins and emergence to its downfall in several mammalian lineages. Additionally, we delineate the annotation of UCPs in vertebrates by analyzing genomic organization and summarize the phylogeny of UCP1 within the closest relatives of humans, the great apes. Outlining whether the molecular networks controlling thermogenesis in adipose tissue (commonly known as the browning potential) pre-dated the classical thermogenic function of BAT and UCP1, and whether the evolutionary inactivation of UCP1 enhanced compensatory thermogenic mechanisms, should be of major interest to those who aim to access adipose tissue thermogenesis in a biomedical context.

Nationell ämneskategori
Biologiska vetenskaper
Identifikatorer
urn:nbn:se:su:diva-173002 (URN)10.1016/j.mam.2019.06.006 (DOI)000482103700002 ()31238069 (PubMedID)
Tillgänglig från: 2019-10-11 Skapad: 2019-10-11 Senast uppdaterad: 2022-02-26Bibliografiskt granskad
Organisationer
Identifikatorer
ORCID-id: ORCID iD iconorcid.org/0000-0001-8411-0415

Sök vidare i DiVA

Visa alla publikationer