Open this publication in new window or tab >>Show others...
2023 (English)In: Journal of Chemical Physics, ISSN 0021-9606, E-ISSN 1089-7690, Vol. 158, no 17, article id 174305Article in journal (Refereed) Published
Abstract [en]
Naphthalene and azulene are isomeric polycyclic aromatic hydrocarbons (PAHs) and are topical in the context of astrochemistry due to the recent discovery of substituted naphthalenes in the Taurus Molecular Cloud-1 (TMC-1). Here, the thermal- and photo-induced isomerization, dissociation, and radiative cooling dynamics of energized (vibrationally hot) naphthalene (Np+) and azulene (Az(+)) radical cations, occurring over the microsecond to seconds timescale, are investigated using a cryogenic electrostatic ion storage ring, affording molecular cloud in a box conditions. Measurement of the cooling dynamics and kinetic energy release distributions for neutrals formed through dissociation, until several seconds after hot ion formation, are consistent with the establishment of a rapid (sub-microsecond) Np+ reversible arrow Az(+) quasi-equilibrium. Consequently, dissociation by C2H2-elimination proceeds predominantly through common Az(+) decomposition pathways. Simulation of the isomerization, dissociation, recurrent fluorescence, and infrared cooling dynamics using a coupled master equation combined with high-level potential energy surface calculations [CCSD(T)/cc-pVTZ], reproduce the trends in the measurements. The data show that radiative cooling via recurrent fluorescence, predominately through the Np+ D-0 <- D-2 transition, efficiently quenches dissociation for vibrational energies up to approximate to 1 eV above dissociation thresholds. Our measurements support the suggestion that small cations, such as naphthalene, may be more abundant in space than previously thought. The strategy presented in this work could be extended to fingerprint the cooling dynamics of other PAH ions for which isomerization is predicted to precede dissociation.
Keywords
Potential energy surfaces, Chemical equilibrium, Interstellar clouds, Fluorescence, Photodissociation, Storage rings, Laser beam effects, Dissociation, Isomerization, Chemical compounds
National Category
Chemical Sciences Other Physics Topics
Identifiers
urn:nbn:se:su:diva-229808 (URN)10.1063/5.0147456 (DOI)001010685000007 ()37125715 (PubMedID)2-s2.0-85156218812 (Scopus ID)
2024-05-282024-05-282024-10-15Bibliographically approved