Change search
Link to record
Permanent link

Direct link
Dong, Xiaolin
Publications (2 of 2) Show all publications
Gielnik, M., Szymańska, A., Dong, X., Jarvet, J., Svedružić, Ž. M., Gräslund, A., . . . Wärmländer, S. . T. (2023). Prion Protein Octarepeat Domain Forms Transient β-Sheet Structures upon Residue-Specific Binding to Cu(II) and Zn(II) Ions. Biochemistry, 62(11), 1689-1705
Open this publication in new window or tab >>Prion Protein Octarepeat Domain Forms Transient β-Sheet Structures upon Residue-Specific Binding to Cu(II) and Zn(II) Ions
Show others...
2023 (English)In: Biochemistry, ISSN 0006-2960, E-ISSN 1520-4995, Vol. 62, no 11, p. 1689-1705Article in journal (Refereed) Published
Abstract [en]

Misfolding of the cellular prion protein (PrPC) is associated with the development of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs). Metal ions appear to play a crucial role in PrPC misfolding. PrPC is a combined Cu(II) and Zn(II) metal-binding protein, where the main metal-binding site is located in the octarepeat (OR) region. Thus, the biological function of PrPC may involve the transport of divalent metal ions across membranes or buffering concentrations of divalent metal ions in the synaptic cleft. Recent studies have shown that an excess of Cu(II) ions can result in PrPC instability, oligomerization, and/or neuroinflammation. Here, we have used biophysical methods to characterize Cu(II) and Zn(II) binding to the isolated OR region of PrPC. Circular dichroism (CD) spectroscopy data suggest that the OR domain binds up to four Cu(II) ions or two Zn(II) ions. Binding of the first metal ion results in a structural transition from the polyproline II helix to the β-turn structure, while the binding of additional metal ions induces the formation of β-sheet structures. Fluorescence spectroscopy data indicate that the OR region can bind both Cu(II) and Zn(II) ions at neutral pH, but under acidic conditions, it binds only Cu(II) ions. Molecular dynamics simulations suggest that binding of either metal ion to the OR region results in the formation of β-hairpin structures. As the formation of β-sheet structures can be a first step toward amyloid formation, we propose that high concentrations of either Cu(II) or Zn(II) ions may have a pro-amyloid effect in TSE diseases.

National Category
Biological Sciences
Identifiers
urn:nbn:se:su:diva-218066 (URN)10.1021/acs.biochem.3c00129 (DOI)000988877300001 ()37163663 (PubMedID)2-s2.0-85160591106 (Scopus ID)
Available from: 2023-07-25 Created: 2023-07-25 Last updated: 2023-10-12Bibliographically approved
Berntsson, E., Vosough, F., Svantesson, T., Pansieri, J., Iashchishyn, I. A., Ostojic, L., . . . Wärmländer, S. (2023). Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides. Scientific Reports, 13(1), Article ID 3341.
Open this publication in new window or tab >>Residue-specific binding of Ni(II) ions influences the structure and aggregation of amyloid beta (Aβ) peptides
Show others...
2023 (English)In: Scientific Reports, E-ISSN 2045-2322, Vol. 13, no 1, article id 3341Article in journal (Refereed) Published
Abstract [en]

Alzheimer's disease (AD) is the most common cause of dementia worldwide. AD brains display deposits of insoluble amyloid plaques consisting mainly of aggregated amyloid-beta (A beta) peptides, and A beta oligomers are likely a toxic species in AD pathology. AD patients display altered metal homeostasis, and AD plaques show elevated concentrations of metals such as Cu, Fe, and Zn. Yet, the metal chemistry in AD pathology remains unclear. Ni(II) ions are known to interact with A beta peptides, but the nature and effects of such interactions are unknown. Here, we use numerous biophysical methods-mainly spectroscopy and imaging techniques-to characterize A beta/Ni(II) interactions in vitro, for different A beta variants: A beta(1-40), A beta(1-40)(H6A, H13A, H14A), A beta(4-40), and A beta(1-42). We show for the first time that Ni(II) ions display specific binding to the N-terminal segment of full-length A beta monomers. Equimolar amounts of Ni(II) ions retard A beta aggregation and direct it towards non-structured aggregates. The His6, His13, and His14 residues are implicated as binding ligands, and the Ni(II)center dot A beta binding affinity is in the low mu M range. The redox-active Ni(II) ions induce formation of dityrosine cross-links via redox chemistry, thereby creating covalent A beta dimers. In aqueous buffer Ni(II) ions promote formation of beta sheet structure in A beta monomers, while in a membrane-mimicking environment (SDS micelles) coil-coil helix interactions appear to be induced. For SDS-stabilized A beta oligomers, Ni(II) ions direct the oligomers towards larger sizes and more diverse (heterogeneous) populations. All of these structural rearrangements may be relevant for the A beta aggregation processes that are involved in AD brain pathology.

National Category
Biochemistry Molecular Biology
Identifiers
urn:nbn:se:su:diva-229707 (URN)10.1038/s41598-023-29901-5 (DOI)000986236800026 ()36849796 (PubMedID)2-s2.0-85148966000 (Scopus ID)
Available from: 2024-05-29 Created: 2024-05-29 Last updated: 2025-02-20Bibliographically approved
Organisations

Search in DiVA

Show all publications