Open this publication in new window or tab >>Show others...
2025 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966Article in journal, Meeting abstract (Other academic) Submitted
Abstract [en]
Haro 11 is the closest known Lyman continuum leaking galaxy and serves as an important laboratory for studying the escape of Lyman continuum radiation. The galaxy is a metal-poor, starburst galaxy believed to be undergoing a merger that might help facilitate the escape of radiation. In this study, we carry out a large suite of numerical simulations of a merger between two disc galaxies, to study possible origins of Haro 11 and understand under which conditions various features of the galaxy are formed. By varying galaxy parameters describing the orbital configurations, masses, and their inclination, we perform a total of ~500 simulations. We demonstrate that a two-disc galaxy merger is able to reproduce key, observed features of Haro 11, including its morphology, gas kinematics, star formation history, and stellar population ages and masses. We also find that small parameter variations have minimal impact on the orbits and resulting galaxy properties. In particular, we present a fiducial Haro 11 model that produces the single observed tidal tail, the presence of three stellar knots, and inner gas morphology and kinematics. By performing mock observations, we compare with the results of observational data and discuss possible origins for various features. Furthermore, we present newly gathered observational data that confirms the presence of a stellar tidal tail with similar length and direction as our simulations.
Keywords
galaxies: individual (Haro 11), galaxies: evolution, galaxies: interactions, galaxies: star formation, galaxies: starburst, methods: numerical
National Category
Astronomy, Astrophysics and Cosmology
Research subject
Astronomy
Identifiers
urn:nbn:se:su:diva-242081 (URN)10.48550/arXiv.2503.01982 (DOI)
2025-04-112025-04-112025-04-29Bibliographically approved