Change search
Link to record
Permanent link

Direct link
Publications (10 of 23) Show all publications
Fred, J., Valero, P. & Van Steenbrugge, H. (2025). Integrating the socio-ecological and early algebra. In: Le Roux, K., Coles, A., Solares-Rojas, A., Bose, A., Vistro-Yu, C., Valero, P., et al. (Chair), (Ed.), The 27th ICMI Study 'Mathematics Education and the Socio-Ecological': . Paper presented at The ICMI Study 27 Conference.
Open this publication in new window or tab >>Integrating the socio-ecological and early algebra
2025 (English)In: The 27th ICMI Study 'Mathematics Education and the Socio-Ecological' / [ed] Le Roux, K., Coles, A., Solares-Rojas, A., Bose, A., Vistro-Yu, C., Valero, P., et al. (Chair),, 2025Conference paper, Published paper (Refereed)
Abstract [en]

This paper is an invitation to imagine new futures for mathematics education in the context of earlyalgebraic thinking in the socio-ecological. The issue at hand is to re-imagine the concerns of why,what and how to teach central areas of the school mathematics curriculum. In this paper, the researchrevolves around Jenny Fred’s current PhD work, in which a research team consisting of in-serviceteachers, pre-service teachers, teacher educators and researchers have been working on the idea ofwhat we call algebraic wicked problems (AWP) to simultaneously integrate early algebra and thesocio-ecological into students’ work (Fred et al., 2024b). We highlight five pedagogical features ofAWPs and the research team’s work in constituting a critical work zone integrating early algebraand the socio-ecological. We conclude the paper with ideas to further theorize the possibilities ofintegrating early algebra and the socio-ecological in significant ways.

Keywords
algebraic wicked problems, early algebra, critical mathematics education, sustainability, socio-ecological issues
National Category
Didactics
Research subject
Mathematics Education
Identifiers
urn:nbn:se:su:diva-245483 (URN)
Conference
The ICMI Study 27 Conference
Available from: 2025-08-11 Created: 2025-08-11 Last updated: 2025-08-12Bibliographically approved
Fred, J., Van Steenbrugge, H. & Valero, P. (2024). Connecting Early Algebra and Sustainability Through Dilemmas in Algebraic Wicked Problems. In: Aisling Twohill; Işıl Işler Baykal; Jodie Miller; Eric Knuth; Alessandro Ribeiro (Ed.), Proceedings from ICME 15, Topic Study Group 1.2: Teaching and Learning of Early Algebra. Paper presented at 15th International Congress on Mathematical Education (ICME-15), Sydney, Australia, 7-14 July, 2024 (pp. 16-23).
Open this publication in new window or tab >>Connecting Early Algebra and Sustainability Through Dilemmas in Algebraic Wicked Problems
2024 (English)In: Proceedings from ICME 15, Topic Study Group 1.2: Teaching and Learning of Early Algebra / [ed] Aisling Twohill; Işıl Işler Baykal; Jodie Miller; Eric Knuth; Alessandro Ribeiro, 2024, p. 16-23Conference paper, Published paper (Refereed)
Abstract [en]

Early algebraic thinking can be connected in significant ways to sustainability issues through algebraic wicked problems (AWP). AWP are problems that mobilize children to think algebraically while experiencing dilemmas on values at stake in sustainability. Both algebraic thinking and sustainability issues become inseparably connected. From an ongoing analysis of 10 research group meetings over a school year in a group consisting of teachers, pre-service teachers, and researchers, and based on observed lessons, we explore such dilemmas as a central characteristic of AWP. This provides details into what may be important aspects in the further design of AWPs.

Keywords
algebraic wicked problems, early algebra, contradictions, critical mathematics education, sustainability, socio-ecological issues
National Category
Didactics
Research subject
Mathematics Education
Identifiers
urn:nbn:se:su:diva-239596 (URN)
Conference
15th International Congress on Mathematical Education (ICME-15), Sydney, Australia, 7-14 July, 2024
Available from: 2025-02-14 Created: 2025-02-14 Last updated: 2025-02-17Bibliographically approved
Eriksson, I., Fred, J., Nordin, A.-K., Nyman, M. & Wettergren, S. (2024). “Learning models” as a means of materialising algebraic thinking in joint actions: results from a design study in grades 1 and 5 in Sweden. In: Aleksander Veraksa; Yulia Solovieva (Ed.), Learning mathematics by cultural-historical theory implementation: Understanding Vygotsky’s approach (pp. 259-279). Springer
Open this publication in new window or tab >>“Learning models” as a means of materialising algebraic thinking in joint actions: results from a design study in grades 1 and 5 in Sweden
Show others...
2024 (English)In: Learning mathematics by cultural-historical theory implementation: Understanding Vygotsky’s approach / [ed] Aleksander Veraksa; Yulia Solovieva, Springer, 2024, p. 259-279Chapter in book (Refereed)
Abstract [en]

The aim of this chapter, which draws upon data from a design researchproject based on Davydov’s principles of learning activity, is to exemplify the func-tions learning models can have in visualising students’ algebraic thinking whenthey collectively discuss algebraic expressions. The data are comprised of video-taped research lessons in grades 1 and 5, respectively. The analysis indicates that thelearning models enhanced the students’ joint exploration of the idea behind algebraicexpressions and thus materialised their algebraic thinking in the whole-class discus-sions in three ways: (1) materialising an argument, (2) materialising a problem, and(3) materialising a collective memory.

Place, publisher, year, edition, pages
Springer, 2024
Series
Early Childhood Research and Education: An Inter-theoretical Focus, ISSN 2946-6091 ; 7
Keywords
Algebraic thinking, learning activity, El'konin-DAvydov curriculum, whole-class discussions
National Category
Didactics
Research subject
Didactics
Identifiers
urn:nbn:se:su:diva-233805 (URN)10.1007/978-3-031-66894-4_15 (DOI)978-3-031-66893-7 (ISBN)978-3-031-66894-4 (ISBN)
Projects
Förmågan att föra och följa algebraiska resonemang - utmaningar för grund- och gymnasieskolan
Funder
Swedish Institute for Educational Research, 2017-2019
Available from: 2024-09-26 Created: 2024-09-26 Last updated: 2024-09-26Bibliographically approved
Fred, J., Valero, P. & Van Steenbrugge, H. (2024). Tracing connections in working toward a critical zone of making algebraic wicked problems. In: Lisa Björklund Boistrup; Benedetto Di Paola (Ed.), Mathematics and practices: Actions for futures. Paper presented at CIEAEM 74 (pp. 127-136). Palermo: G.R.I.M. - Gruppo di Ricerca sull'Insegnamento/Apprendimento delle Matematiche Universita' degli Studi di Palermo, 13
Open this publication in new window or tab >>Tracing connections in working toward a critical zone of making algebraic wicked problems
2024 (English)In: Mathematics and practices: Actions for futures / [ed] Lisa Björklund Boistrup; Benedetto Di Paola, Palermo: G.R.I.M. - Gruppo di Ricerca sull'Insegnamento/Apprendimento delle Matematiche Universita' degli Studi di Palermo , 2024, Vol. 13, p. 127-136Conference paper, Published paper (Refereed)
Abstract [en]

We study the connections among different “actors” — human as well as nonhuman — to document and understand an inquiry group’s movement toward designing and implementing Algebraic Wicked Problems (AWPs). AWPs combine both algebraic and environmental ideas. The inquiry group consists of Swedish teachers, teacher students and a researcher-teacher educator. Since AWPs have not been explored yet in teaching, it has taken a long process to imagine and trying to formulate them. Our focus on the network of connections among actors has helped to trace aspects of this long process. It has also helped identifying specific non-human actors that constitute the network such as diagrams and materials. Our analysis suggests that the process of imagining something that does not yet exist in itself also can becomes an actor. 

Place, publisher, year, edition, pages
Palermo: G.R.I.M. - Gruppo di Ricerca sull'Insegnamento/Apprendimento delle Matematiche Universita' degli Studi di Palermo, 2024
Keywords
participatory research, Early algebra, critical mathematics education, Latour, algebraic wicked problems
National Category
Didactics
Research subject
Mathematics Education
Identifiers
urn:nbn:se:su:diva-231518 (URN)
Conference
CIEAEM 74
Funder
Swedish Research Council, VR3100-2908
Available from: 2024-06-25 Created: 2024-06-25 Last updated: 2024-06-27Bibliographically approved
Fred, J., Valero, P. & Van Steenbrugge, H. (2023). Algebraic wicked problems: Bridging the gap between early school algebra and socially relevant issues?. In: Paul Drijvers; Csaba Csapodi; Hanna Palmér; Katalin Gosztonyi; Eszter Herendiné-Kónya (Ed.), Proceedings of the Thirteenth Congress of the European Society for Research in Mathematics Education (CERME13): . Paper presented at 13th Congress of the European Society for Research in Mathematics Education (CERME13), Budapest, Hungary, July 10-14, 2023 (pp. 536-543). Budapest: Alfréd Rényi Institute of Mathematics
Open this publication in new window or tab >>Algebraic wicked problems: Bridging the gap between early school algebra and socially relevant issues?
2023 (English)In: Proceedings of the Thirteenth Congress of the European Society for Research in Mathematics Education (CERME13) / [ed] Paul Drijvers; Csaba Csapodi; Hanna Palmér; Katalin Gosztonyi; Eszter Herendiné-Kónya, Budapest: Alfréd Rényi Institute of Mathematics , 2023, p. 536-543Conference paper, Published paper (Refereed)
Abstract [en]

This paper aims to discuss an advance in the direction of bridging the gap between early school algebra and socially relevant issues using the idea of wicked problems. We do so by focusing on the possibilities and challenges of working with the idea of algebraic wicked in the context of planning, teaching, and reflecting on algebra lessons for young children of 7-9 years old. This endeavor is a collaboration between the researcher/teacher educator, teacher students and in-service teachers following the critical research methodology of imagining and trying to create something that does not yet exist. This paper represents partly how far we have come to formulate an algebraic wicked problem that can invite students to engage into a cultural and sociological algebraic activity and as such reports on what we have learned from trying to design and enact algebraic wicked problems.

Place, publisher, year, edition, pages
Budapest: Alfréd Rényi Institute of Mathematics, 2023
Keywords
Early algebra, algebraic thinking, critical mathematics education, socio-political perspective, wicked problems.
National Category
Didactics
Research subject
Mathematics Education
Identifiers
urn:nbn:se:su:diva-228014 (URN)978-963-7031-04-5 (ISBN)
Conference
13th Congress of the European Society for Research in Mathematics Education (CERME13), Budapest, Hungary, July 10-14, 2023
Available from: 2024-04-08 Created: 2024-04-08 Last updated: 2024-05-08Bibliographically approved
Fred, J., Valero, P. & Van Steenbrugge, H. (2022). Powerful algebraic ideas: Early algebraic thinking andactive citizenship. In: Proceedings from the 12th Congress of the European Society for Research in Mathematics Education (CERME12): . Paper presented at Twelfth Congress of the European Society for Research in MathematicsEducation (CERME12),Bozen-Bolzano, Italy, February 2022.
Open this publication in new window or tab >>Powerful algebraic ideas: Early algebraic thinking andactive citizenship
2022 (English)In: Proceedings from the 12th Congress of the European Society for Research in Mathematics Education (CERME12), 2022Conference paper, Published paper (Refereed)
Abstract [en]

How can powerful algebraic ideas be understood for the combined purpose of developing students’ emergent algebraic thinking and fostering future active citizens? To address this question, we have examined two major research review books on early algebra to investigate the interpretations of “powerful algebraic ideas” that are present in the books as a whole. Skovsmose and Valero’s (2008) four interpretations of powerful mathematical ideas (which focus on the logical, psychological, cultural, and sociological power of mathematics) were used. We show that in the books and book chapters there is a dominance of the logical and psychological interpretations of the power ofalgebraic. Furthermore, the cultural and sociological interpretations appear connected to algebraic thinking as a resource or tool for action in “society”. Advancing new possibilities of expanding the ways in which early algebraic thinking is made powerful for students is a challenge to research. 

Keywords
Early algebra, algebraic thinking, powerful algebraic ideas, socio-political perspective
National Category
Didactics
Research subject
Mathematics Education
Identifiers
urn:nbn:se:su:diva-207894 (URN)
Conference
Twelfth Congress of the European Society for Research in MathematicsEducation (CERME12),Bozen-Bolzano, Italy, February 2022
Available from: 2022-08-16 Created: 2022-08-16 Last updated: 2022-08-16Bibliographically approved
Fred, J., Brink, C., Lechner, F., Rundquist, J., Åström, M. & Älmeby, E. (2022). Vad kan ett algebraiskt "wicked problem" vara?. In: Book of abstracts: Lärarnas forskningskonferens 2022. Paper presented at Lärarnas forskningskonferens, Stockholm, Sverige, november 1, 2022 (pp. 29-30).
Open this publication in new window or tab >>Vad kan ett algebraiskt "wicked problem" vara?
Show others...
2022 (Swedish)In: Book of abstracts: Lärarnas forskningskonferens 2022, 2022, p. 29-30Conference paper, Oral presentation with published abstract (Refereed)
Abstract [sv]

Inom forskningsfältet early algebra framhålls betydelsen av att elever redan i årskurs F-3 utmanas till ett algebraiska tänkande, då goda kunskaper i algebra bland annat anses möjliggöra för elever att utvecklas även inom andra områden inom matematiken (e.g. Cai & Knuth, 2011; Kieran, 2018). Ur ett bredare perspektiv, än bara algebra, har intresset för de sociopolitiska dimensionerna av matematikundervisning vuxit bland forskare och praktiker under de senaste decennierna (Gutiérrez, 2013; Planas & Valero, 2016). Ur ett sociopolitiskt perspektiv handlar matematikundervisningen inte bara om att lära matematik utan också om vad matematikundervisningen tillför eleverna i förhållande till att bli aktiva medborgare. Det finns således en utmaning för undervisningen i algebra i relation till att försöka kombinera främjandet av framtida demokratiska medborgare och elevers utveckling av algebraiskt tänkande. Ett sätt att försöka hantera denna utmaning kan vara att arbeta med ”wicked problems” (se t.ex. Rittel & Webbers, 1973). ”Wicked problems" är komplexa problem som kan stödja idén om elevnära kontexter, stärka elevers kritiska reflektion och demokratiska deltagande i utvidgade gemenskaper samt skapa en annan typ av behov av algebraiskt tänkande.

Syftet med vår presentation är att diskutera ”wicked problems” (för elever i årskurs 1-3) som såväl utmanar elevers algebraiska tänkandet som deras förmåga att bli aktiva medborgare. Frågeställningen är: Hur samspelar/samspelar inte socio-politiska, algebraiska och didaktiska aspekter i ett algebraiskt ”wicked problem”?

Presentationen bygger på data från ett kollaborativt arbete där lärare, lärarstudenter, lärarutbildare och forskare tillsammans i en iterativ process har utforskat idén om algebraiska ”wicked problems”. I den iterativa processen har Skovsmose och Borbas (2004) modell använts. Den erbjuder metodologiska verktyg för att tänka, göra och prata om kritiska element som kan dyka upp i utforskandeprocessen när man vill utmana en existerande och/eller dominerande praktik. I detta fall handlar det om att försöka placera algebraiskt tänkande i ett större sammanhang och där även idén om främjandet av aktiva medborgare finns med.

Våra tentativa resultat ger en indikation på att ”wicked problem” kan stödja idén om vad en elevnära kontext kan vara samt hur man kan skapa en annan typ av behov av algebraiskt tänkande. Resultaten visar också att det finns en uppenbar risk att elever antingen bortser från algebraiska aspekter eller från sociopolitiska aspekter samt att de i vissa fall bortser från båda. I vår presentation kommer vi att med utgångspunkt i våra designade algebraiska ”wicked problem” diskutera möjliga orsaker till vad som gör att socio-politiska, algebraiska och didaktiska aspekter samspelar, inte samspelar eller helt bortses från.

National Category
Didactics
Research subject
Mathematics Education
Identifiers
urn:nbn:se:su:diva-210952 (URN)
Conference
Lärarnas forskningskonferens, Stockholm, Sverige, november 1, 2022
Available from: 2022-11-02 Created: 2022-11-02 Last updated: 2022-11-02Bibliographically approved
Eriksson, I., Fred, J., Nordin, A.-K., Nyman, M. & Wettergren, S. (2021). Tasks, tools, and mediated actions – promoting collective theoretical work on algebraic expressions. Nordisk matematikkdidaktikk, NOMAD: [Nordic Studies in Mathematics Education], 26(3–4), 29-52
Open this publication in new window or tab >>Tasks, tools, and mediated actions – promoting collective theoretical work on algebraic expressions
Show others...
2021 (English)In: Nordisk matematikkdidaktikk, NOMAD: [Nordic Studies in Mathematics Education], ISSN 1104-2176, Vol. 26, no 3–4, p. 29-52Article in journal (Refereed) Published
Abstract [en]

The aim of this article is to exemplify and discuss what teachers using learning activity need to consider when planning and supporting students’ collective theoretical work on algebraic expressions. Data are from two iteratively developed research lessons in two Grade 7 classes. The analysis focuses on students’ tool-mediated actions, the mathematical content processed, how the content is dealt with, and on identifying the crucial aspects that enable collective theoretical work. The result provides examples of how the content of the task, its design, and its tools, as well as the teacher’s and students’ tool-mediated actions are crucial factors in the promotion of collective theoretical work.

Keywords
Algebraic expressions, algebraic thinking, learning activity, tool-mediated actions, whole-class discussions
National Category
Didactics
Research subject
Mathematics Education
Identifiers
urn:nbn:se:su:diva-221754 (URN)
Projects
Förmågan att föra och följa algebraiska resonemang
Funder
Swedish Institute for Educational Research, 2017-2019
Available from: 2023-09-29 Created: 2023-09-29 Last updated: 2023-09-29Bibliographically approved
Nyman, M., Fred, J., Andersson, C., Andersson, L. & Björklund, J. (2020). ”Nä, jag tänkte nog fel ...” - Elevers agens vid algebraiska resonemang i helklass. In: : . Paper presented at Matematikbiennalen 2020, Växjö, Sverige, 16-17 januari, 2020.
Open this publication in new window or tab >>”Nä, jag tänkte nog fel ...” - Elevers agens vid algebraiska resonemang i helklass
Show others...
2020 (Swedish)Conference paper, Oral presentation only (Other academic)
Abstract [sv]

Vad krävs för att undervisningen ska skapa förutsättningar för elever att engageras i kreativa och reflektiva resonemang om algebraiska uttryck? Davydovs lärandeverksamhetsteori tillhandahåller principer som kan användas av lärare för att designa en undervisning som möjliggör för elever att delta i ett teoretiskt och kvalificerande arbete. Presentationen kommer att diskutera dessa faktorer samt ge exempel på hur uppgifter kan utformas och iscensättas för att möjliggöra detta.

Keywords
Algebraiska resonemang, lärandeverksamhet, klassrumskommunikation, algebraiska uttryck
National Category
Didactics
Research subject
Mathematics Education
Identifiers
urn:nbn:se:su:diva-179045 (URN)
Conference
Matematikbiennalen 2020, Växjö, Sverige, 16-17 januari, 2020
Projects
Developing algebraic reasoning capability
Funder
Swedish Institute for Educational Research, 2016/151
Available from: 2020-02-17 Created: 2020-02-17 Last updated: 2022-02-26Bibliographically approved
Fred, J. (2019). Att designa för elevers deltagande i ett algebraiskt arbete: Elever i årskurs 2 och 3 utforskar visuellt växande mönster. Nordisk matematikkdidaktikk, NOMAD: [Nordic Studies in Mathematics Education], 24(3-4), 107-130
Open this publication in new window or tab >>Att designa för elevers deltagande i ett algebraiskt arbete: Elever i årskurs 2 och 3 utforskar visuellt växande mönster
2019 (Swedish)In: Nordisk matematikkdidaktikk, NOMAD: [Nordic Studies in Mathematics Education], ISSN 1104-2176, Vol. 24, no 3-4, p. 107-130Article in journal (Refereed) Published
Abstract [sv]

Artikelns syfte är att beskriva och analysera vad i olika lektionssekvenser som skapar förutsättningar för att elever ska engageras i ett algebraiskt arbete och därmed urskiljer kritiska aspekter. Artikeln bygger på data från tre forskningslektioner i vilka lärandeverksamhet (learning activity) tillsammans med Radfords arbete om mönster-generaliseringar har utgjort teoretiska utgångspunkter. I analysen har didaktiska principer från lärandeverksamhet samt kritiska aspekter gällande att uttrycka och argumentera för mönstergeneraliseringar fungerat som analysredskap. Resultatet kan bidra till att fördjupa förståelsen gällande på vilka sätt principerna från lärandeverksamhet kan stödja ett etablerande och upprätthållande av ett algebraiskt arbete och därmed möjliggöra för elevers urskiljande av kritiska aspekter.

Abstract [en]

The aim of the article is to describe and analyze what in different lesson sequences that creates the conditions for students to be involved in algebraic work and thereby distinguish critical aspects. The article is based on data from three research lessons in which Learning activity together with Radford’s work on pattern generalizations were theoretical starting points. In the analysis, didactic principles of Learning activity along with a few identified critical aspects regarding the ability to express and justify algebraic generalizations served as analytical tools. The result can contribute to deepened understanding of the ways the principles can support the establishment and maintenance of algebraic work enabling students to distinguish critical aspects.

Keywords
algebraic work, Learning activity, Davydov’s curriculum, algebraic pattern generalizations, critical aspects, algebraiskt arbete, lärandeverksamhet, Davydovs matematiska program, algebraiska mönstergeneraliseringar, kritiska aspekter
National Category
Didactics
Research subject
Mathematics Education
Identifiers
urn:nbn:se:su:diva-176375 (URN)
Available from: 2019-12-03 Created: 2019-12-03 Last updated: 2022-02-26Bibliographically approved
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-0252-7223

Search in DiVA

Show all publications