Change search
Link to record
Permanent link

Direct link
Publications (6 of 6) Show all publications
Luo, S., Weissenbilder, R., Laurell, H., Bello, R. Y., Marante, C., Ammitzböll, M., . . . L'Huillier, A. (2024). Influence of final state interactions in attosecond photoelectron interferometry. Physical Review Research, 6(4), Article ID 043271.
Open this publication in new window or tab >>Influence of final state interactions in attosecond photoelectron interferometry
Show others...
2024 (English)In: Physical Review Research, E-ISSN 2643-1564, Vol. 6, no 4, article id 043271Article in journal (Refereed) Published
Abstract [en]

Fano resonances are ubiquitous phenomena appearing in many fields of physics, e.g., atomic or molecular photoionization, or electron transport in quantum dots. Recently, attosecond interferometric techniques have been used to measure the amplitude and phase of photoelectron wave packets close to Fano resonances in argon and helium, allowing for the retrieval of the temporal dynamics of the photoionization process. In this work, we study the photoionization of argon atoms close to the 3s13p64p autoionizing state using an interferometric technique with high spectral resolution. The phase shows a monotonic 2π variation across the resonance or a nonmonotonic less than π variation depending on experimental conditions, e.g., the probe laser bandwidth. Using three different, state-of-the-art calculations, we show that the measured phase is influenced by the interaction between final states reached by two-photon transitions.

National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:su:diva-241065 (URN)10.1103/PhysRevResearch.6.043271 (DOI)001379580500002 ()2-s2.0-85212335416 (Scopus ID)
Available from: 2025-03-24 Created: 2025-03-24 Last updated: 2025-03-24Bibliographically approved
Zapata, F., Vinbladh, J., Ljungdahl, A., Lindroth, E. & Dahlström, J. M. (2022). Relativistic time-dependent configuration-interaction singles method. Physical Review A: covering atomic, molecular, and optical physics and quantum information, 105(1), Article ID 012802.
Open this publication in new window or tab >>Relativistic time-dependent configuration-interaction singles method
Show others...
2022 (English)In: Physical Review A: covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, E-ISSN 2469-9934, Vol. 105, no 1, article id 012802Article in journal (Refereed) Published
Abstract [en]

In this work, a derivation and implementation of the relativistic time-dependent configuration-interaction singles (RTDCIS) method is presented. Various observables for krypton and xenon atoms obtained by RTDCIS are compared with experimental data and alternative relativistic calculations. This includes energies of occupied orbitals in the Dirac-Fock ground state, Rydberg state energies, Fano resonances, and photoionization cross sections. Diagrammatic many-body perturbation theory, based on the relativistic random phase approximation, is used as a benchmark with excellent agreement between RTDCIS reported at the Tamm-Dancoff level. Results from RTDCIS are computed in the length gauge, where the negative energy states can be omitted with acceptable loss of accuracy. A complex absorbing potential, that is used to remove photoelectrons far from the ion, is implemented as a scalar potential and validated for RTDCIS. The RTDCIS methodology presented here opens for future studies of strong-field processes, such as attosecond transient absorption and high-order harmonic generation, with electron and hole spin dynamics and other relativistic effects described by first principles via the Dirac equation.

National Category
Atom and Molecular Physics and Optics
Identifiers
urn:nbn:se:su:diva-204030 (URN)10.1103/PhysRevA.105.012802 (DOI)000771583600007 ()2-s2.0-85122561115 (Scopus ID)
Available from: 2022-04-19 Created: 2022-04-19 Last updated: 2022-11-14Bibliographically approved
Saha, S., Vinbladh, J., Sörngård, J., Ljungdahl, A. & Lindroth, E. (2021). Angular anisotropy parameters for photoionization delays. Physical Review A: covering atomic, molecular, and optical physics and quantum information, 104(3), Article ID 033108.
Open this publication in new window or tab >>Angular anisotropy parameters for photoionization delays
Show others...
2021 (English)In: Physical Review A: covering atomic, molecular, and optical physics and quantum information, ISSN 2469-9926, E-ISSN 2469-9934, Vol. 104, no 3, article id 033108Article in journal (Refereed) Published
Abstract [en]

Anisotropy parameters describing the angular dependence of the photoionization delay are defined. The formalism is applied to results obtained with the relativistic random phase approximation with exchange for photoionization delay from the outermost s-orbitals in selected rare-gas atoms. Any angular dependence in the Wigner delay is induced here by relativistic effects, while the measurable atomic delay exhibits such a dependence also in the nonrelativistic limit. The contributions to the anisotropy from the different sources are disentangled and discussed. For the heavier rare gases, it is shown that measurements of the delay for electrons ejected in specific angles, relative to, e.g., those ejected along the laser polarization, are directly related here to the Wigner delay. For a considerable range of angles, the contributions from the second photon largely get canceled when the results in different angles are compared, and this angle-relative atomic delay is then close to the corresponding Wigner delay.

Keywords
Light-matter interaction, Single- and few-photon ionization & excitation, Ultrafast phenomena
National Category
Physical Sciences
Identifiers
urn:nbn:se:su:diva-197867 (URN)10.1103/PhysRevA.104.033108 (DOI)000700565900001 ()2-s2.0-85115344573 (Scopus ID)
Available from: 2021-10-19 Created: 2021-10-19 Last updated: 2024-04-04Bibliographically approved
Ljungdahl, A. (2021). Computing attosecond delays in atomic photoionisation: A non-iterative method for many-electron correlation within the Random Phase Approximation with Exchange. (Licentiate dissertation). Stockholm University
Open this publication in new window or tab >>Computing attosecond delays in atomic photoionisation: A non-iterative method for many-electron correlation within the Random Phase Approximation with Exchange
2021 (English)Licentiate thesis, monograph (Other academic)
Abstract [sv]

När en atom absorberar fotoner, i växelverkan med tillräckligt högenergetisktljus, så kan en (eller flera) av atomens elektroner ”sparkas ut”. Det resulterar i en positivt laddad jon och en (eller flera) så kallade fotoelektroner. Den här processen är känd som den fotoelektriska effekten, men kallas också för fotojonisering. Fotojonisering ansågs länge vara en process som skedde underså kort tid att den praktiskt taget var omedelbar. I och med utvecklingen av allt mer högenergetiska ljuskällor så kunde fotojonisering studeras i allt fler element. För att korrekt beskriva fotojonisering i system med flera elektroner visade det sig att hänsyn behöver tas till hur atomens elektroner tillsammans växelverkar som svar på ljusabsorption. Ytterligare framsteg inom laserfysik och laserteknologi har gjort det möjligt att skapa extremt korta ljuspulser, vilket har öppnat upp för studier av elektrondynamiken på dess ”naturliga tidsskala”: attosekunder (10−18 sekunder). Under de senaste drygt tio åren så har attosekundspulser använts för att undersöka tidsaspekten av fotojonisering. Ett resultat av detta är kvantifieringen av en tidsförskjutning, på mellan tio- och hundratals attosekunder, för en fotoelektron som propagerat ut från atomen, jämfört med en fri elektron. Men elektroner beskrivs av dess kvantmekaniska vågfunktion, och tid är ingen direkt mätbar storhet i kvantmekaniken. Istället är tidsförskjutningen kopplad till fasen på den vågfunktion som utgör fotoelektronen. Den här avhandlingen är skriven i ett sammanhang av beräkningar av fotoelektronens vågfunktion. Ett syfte med dessa beräkningar är att jämföraoch tolka resultaten från det attosekundsexperiment som ofta benämns med förkortningen ”RABBIT”. Texten ger en övergripande bild av principerna bakom detta interferometriska experiment. Vidare ges en beskrivning av den teori som ligger till grund för våra beräkningar av vågfunktionen, och hur en tidsförskjutning kan kopplas till dess fas. Speciellt så presenteras de mångpartikeleffekter som ingår i den så kallade ”random phase approximation with exhange” (RPAE), och hur de inkluderas i fotoelektronens vågfunktion. Vi introducerar en numerisk metod för att beräkna vågfunktionen inom RPAE, baserat på lösningen av ett linjärt ekvationssystem. Den här metoden har fördelen gentemot tidigare, iterativa metoder, att den inte begränsas av konvergensproblem, samt att den utnyttjar optimerade rutiner för lösning av linjära ekvationssystem. Som exempel på att metoden verkar fungera visas beräkningar av tvärsnittet för fotojonisering (med en foton) i neon och xenon. Beräkningarna är utförda med en relativistisk implementering och visar på korrekt inkludering av RPAE, samt möjligheten att upplösa autojoniserande resonanser.

Place, publisher, year, edition, pages
Stockholm University, 2021. p. 43
Keywords
Random phase approximation with exchange, attosecond physics, attosecond delays
National Category
Atom and Molecular Physics and Optics
Research subject
Theoretical Physics
Identifiers
urn:nbn:se:su:diva-198013 (URN)
Opponent
Supervisors
Available from: 2021-10-22 Created: 2021-10-22 Last updated: 2022-02-25Bibliographically approved
Norell, J., Ljungdahl, A. & Odelius, M. (2019). Interdependent Electronic Structure, Protonation, and Solvatization of Aqueous 2-Thiopyridone. Journal of Physical Chemistry B, 123(26), 5555-5567
Open this publication in new window or tab >>Interdependent Electronic Structure, Protonation, and Solvatization of Aqueous 2-Thiopyridone
2019 (English)In: Journal of Physical Chemistry B, ISSN 1520-6106, E-ISSN 1520-5207, Vol. 123, no 26, p. 5555-5567Article in journal (Refereed) Published
Abstract [en]

2-Thiopyridone (2-TP), a common model system for excited-state proton transfer, has been simulated in aqueous solution with ab initio molecular dynamics. The interplay of electronic structure, protonation, and solvatization is investigated by comparison of three differently protonated molecular forms and between the lowest singlet and triplet electronic states. An interdependence clearly manifests in the mixed-character T-1 state for the 2-TP form, systematic structural distortions of the 2-mercaptopyridine (2-MP) form, and photobase protolysis of the 2-TP- form, in the aqueous phase. In comparison, simplified continuum models for the solvatization are found to be significantly inaccurate for several of the species. To facilitate future computational studies, we therefore present a minimal representative solvatization complex for each stable form and electronic state. Our findings demonstrate the importance of explicit solvatization of the compound and sets the studies. stage for including it also in future studies.

National Category
Physical Sciences Chemical Sciences
Research subject
Theoretical Physics
Identifiers
urn:nbn:se:su:diva-171766 (URN)10.1021/acs.jpcb.9b03084 (DOI)000474796300018 ()31244103 (PubMedID)2-s2.0-85068181707 (Scopus ID)
Available from: 2019-08-28 Created: 2019-08-28 Last updated: 2022-11-02Bibliographically approved
Saha, S., Ljungdahl, A., Petersson, L., Sörngård, J., Vinbladh, J. & Lindroth, E.Photoionization cross sections and delays for resonances between the outermost np3/2 and np1/2 thresholds in xenon and radon.
Open this publication in new window or tab >>Photoionization cross sections and delays for resonances between the outermost np3/2 and np1/2 thresholds in xenon and radon
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

Photoionization cross sections and delays are calculated within the relativistic random phase approximation with exchange for xenon and radon in the energy region between the first and second ionization threshold. Resonance parameters for the first few resonances in both systems are presented and the angular dependence is discussed.

Keywords
photoionization, delay, attosecond, asymmetry parameters, numerical simulation
National Category
Atom and Molecular Physics and Optics
Research subject
Theoretical Physics
Identifiers
urn:nbn:se:su:diva-227933 (URN)
Funder
Swedish Research Council, 2020-0331Knut and Alice Wallenberg Foundation, 2017.0104Wenner-Gren FoundationsCarl Tryggers foundation
Available from: 2024-04-04 Created: 2024-04-04 Last updated: 2024-04-05
Organisations
Identifiers
ORCID iD: ORCID iD iconorcid.org/0000-0002-7875-0544

Search in DiVA

Show all publications