Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Multimessenger search for electrophilic feebly interacting particles from supernovae
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0002-5364-2109
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0002-8410-0345
Number of Authors: 32024 (English)In: Physical Review D: covering particles, fields, gravitation, and cosmology, ISSN 2470-0010, E-ISSN 2470-0029, Vol. 109, no 10, article id 103028Article in journal (Refereed) Published
Abstract [en]

We study MeV-scale electrophilic feebly interacting particles (FIPs), that may be abundantly produced in supernova explosions, escape the star and decay into electrons and positrons. This exotic injection of leptons in the Milky Way leaves an imprint in both photon and cosmic ray fluxes. Specifically, positrons lose energy and annihilate almost at rest with background electrons, producing photons with 511 keV energy. In addition, electrons and positrons radiate photons through bremsstrahlung emission and upscatter the low-energy galactic photon fields via the inverse Compton process generating a broad emission from x-ray to 𝛾 ray energies. Finally, electrons and positrons are directly observable in cosmic ray experiments. In order to describe the FIP-induced lepton injection in full generality, we use a model-independent parametrization which can be applied to a host of FIPs such as axionlike particles, dark photons and sterile neutrinos. Theoretical predictions are compared to experimental data to robustly constrain FIP-electron interactions with an innovative multimessenger analysis.

Place, publisher, year, edition, pages
2024. Vol. 109, no 10, article id 103028
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-231523DOI: 10.1103/PhysRevD.109.103028ISI: 001239211500005Scopus ID: 2-s2.0-85193684746OAI: oai:DiVA.org:su-231523DiVA, id: diva2:1885982
Available from: 2024-07-29 Created: 2024-07-29 Last updated: 2024-07-29Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

De La Torre Luque, PedroCarenza, Pierluca

Search in DiVA

By author/editor
De La Torre Luque, PedroBalaji, ShyamCarenza, Pierluca
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Physical Review D: covering particles, fields, gravitation, and cosmology
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 17 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf