Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
The GALAH survey: tracing the Milky Way’s formation and evolution through RR Lyrae stars
Show others and affiliations
Number of Authors: 422024 (English)In: Monthly notices of the Royal Astronomical Society, ISSN 0035-8711, E-ISSN 1365-2966, Vol. 531, no 1, p. 137-162Article in journal (Refereed) Published
Abstract [en]

Stellar mergers and accretion events have been crucial in shaping the evolution of the Milky Way (MW). These events have been dynamically identified and chemically characterized using red giants and main-sequence stars. RR Lyrae (RRL) variables can play a crucial role in tracing the early formation of the MW since they are ubiquitous, old (t ≥ 10 Gyr) low-mass stars and accurate distance indicators. We exploited Data Release 3 of the GALAH survey to identify 78 field RRLs suitable for chemical analysis. Using synthetic spectra calculations, we determined atmospheric parameters and abundances of Fe, Mg, Ca, Y, and Ba. Most of our stars exhibit halo-like chemical compositions, with an iron peak around [Fe/H] ≈ −1.40, and enhanced Ca and Mg content. Notably, we discovered a metal-rich tail, with [Fe/H] values ranging from −1 to approximately solar metallicity. This sub-group includes almost 1/4 of the sample, it is characterized by thin disc kinematics and displays sub-solar α-element abundances, marginally consistent with the majority of the MW stars. Surprisingly, they differ distinctly from typical MW disc stars in terms of the s-process elements Y and Ba. We took advantage of similar data available in the literature and built a total sample of 535 field RRLs for which we estimated kinematical and dynamical properties. We found that metal-rich RRLs (1/3 of the sample) likely represent an old component of the MW thin disc. We also detected RRLs with retrograde orbits and provided preliminary associations with the Gaia–Sausage–Enceladus, Helmi, Sequoia, Sagittarius, and Thamnos stellar streams.

Place, publisher, year, edition, pages
2024. Vol. 531, no 1, p. 137-162
Keywords [en]
stars: abundances, stars: Population II, stars: variables: RR Lyrae, Galaxy: abundances, Galaxy: disc, Galaxy: halo
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-232666DOI: 10.1093/mnras/stae1149ISI: 001222085200016Scopus ID: 2-s2.0-85193505328OAI: oai:DiVA.org:su-232666DiVA, id: diva2:1890923
Available from: 2024-08-21 Created: 2024-08-21 Last updated: 2024-08-21Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Lind, Karin

Search in DiVA

By author/editor
Lind, Karin
By organisation
Department of Astronomy
In the same journal
Monthly notices of the Royal Astronomical Society
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 27 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf