Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Hybrid Machine Learning Approach to Predict the Site Selectivity of Iridium-Catalyzed Arene Borylation
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för organisk kemi. Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Sweden.ORCID-id: 0000-0002-0904-2835
Vise andre og tillknytning
Rekke forfattare: 72023 (engelsk)Inngår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 145, nr 31, s. 17367-17376Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The borylation of aryl and heteroaryl C–H bonds is valuable for the site-selective functionalization of C–H bonds in complex molecules. Iridium catalysts ligated by bipyridine ligands catalyze the borylation of the C–H bond that is most acidic and least sterically hindered in an arene, but predicting the site of borylation in molecules containing multiple arenes is difficult. To address this challenge, we report a hybrid computational model that predicts the Site of Borylation (SoBo) in complex molecules. The SoBo model combines density functional theory, semiempirical quantum mechanics, cheminformatics, linear regression, and machine learning to predict site selectivity and to extrapolate these predictions to new chemical space. Experimental validation of SoBo showed that the model predicts the major site of borylation of pharmaceutical intermediates with higher accuracy than prior machine-learning models or human experts, demonstrating that SoBo will be useful to guide experiments for the borylation of specific C(sp2)–H bonds during pharmaceutical development.

sted, utgiver, år, opplag, sider
2023. Vol. 145, nr 31, s. 17367-17376
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-221267DOI: 10.1021/jacs.3c04986ISI: 001040499800001PubMedID: 37523755Scopus ID: 2-s2.0-85167480744OAI: oai:DiVA.org:su-221267DiVA, id: diva2:1799852
Tilgjengelig fra: 2023-09-25 Laget: 2023-09-25 Sist oppdatert: 2023-09-25bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Johansson, Magnus J.

Søk i DiVA

Av forfatter/redaktør
Elkin, MashaJohansson, Magnus J.Sko''ld, Christian
Av organisasjonen
I samme tidsskrift
Journal of the American Chemical Society

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 57 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf