Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
On the invariance of BLUE in a partitioned linear model
Stockholms universitet, Samhällsvetenskapliga fakulteten, Statistiska institutionen.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Statistiska institutionen.ORCID-id: 0000-0002-8610-0365
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Emneord [en]
best linear unbiased estimator, equivalent models, fixed effects, invariance, random effects.
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-225203OAI: oai:DiVA.org:su-225203DiVA, id: diva2:1826314
Tilgjengelig fra: 2024-01-11 Laget: 2024-01-11 Sist oppdatert: 2024-02-26bibliografisk kontrollert
Inngår i avhandling
1. On Estimation and Prediction in Linear Mixed Models: A new approach to studying equal BLUEs and BLUPs
Åpne denne publikasjonen i ny fane eller vindu >>On Estimation and Prediction in Linear Mixed Models: A new approach to studying equal BLUEs and BLUPs
2024 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

Linear mixed models (LMMs) are widely used to analyze repeated, longitudinal, or clustered data in many disciplines, such as biology, medicine, psychology, sociology, economics, etc. One of the essential components of a linear mixed model is its covariance structure, i.e., the covariance matrices of the random part and the error part, respectively, and the relationship between them. Specifying the covariance structure can be very challenging in a given situation. An important issue concerns the best linear unbiased estimators (BLUE) and the best linear unbiased predictors (BLUPs) under a given LMM and if two LMMs with different covariance structures generate equal BLUEs and/or BLUPs.

This thesis proposes a new approach to determine the equality of the BLUEs and the BLUPs of the fixed and random effects under two linear mixed models with different covariance structures, and we present straightforward criteria to evaluate conditions that lead to equal BLUEs and BLUPs under these two models.  

Papers I and II focus on the equality of the BLUEs, while Papers II and IV study equal BLUPs under two LMMs with different covariance structures. More specifically, Paper I considers two different LMMs concerning their covariance matrices and whether the models generate equal BLUEs. In Paper II, we study the conditions for invariant BLUEs under a partitioned linear fixed effects model and a corresponding linear mixed model. Paper III develops the results to obtain the common BLUPs under two LMMs considering uncorrelated random effects and random errors. Finally, Paper IV extends the results of Paper III to obtain equal BLUPs in two linear mixed models, allowing for a correlation between the random effects and the random errors.

sted, utgiver, år, opplag, sider
Stockholm: Department of Statistics, Stockholm University, 2024. s. 56
Emneord
Best linear unbiased estimator, Best linear unbiased predictor, Linear zero function, Matrix equations
HSV kategori
Forskningsprogram
statistik
Identifikatorer
urn:nbn:se:su:diva-225116 (URN)978-91-8014-637-1 (ISBN)978-91-8014-638-8 (ISBN)
Disputas
2024-03-07, Hörsal 4, hus 2, plan 2, Albano, Albanovägen 18, Stockholm, 10:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2024-02-13 Laget: 2024-01-10 Sist oppdatert: 2024-03-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Person

Chizarifard, Azadehvon Rosen, Tatjana

Søk i DiVA

Av forfatter/redaktør
Chizarifard, Azadehvon Rosen, Tatjana
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric

urn-nbn
Totalt: 75 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf