Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Non-parametric learning critical behavior in Ising partition functions: PCA entropy and intrinsic dimension
Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Queen Mary University of London [QMUL], United Kingdom.ORCID-id: 0000-0003-1606-1257
Vise andre og tillknytning
Rekke forfattare: 62023 (engelsk)Inngår i: Scipost Physics Core, ISSN 2666-9366, Vol. 6, nr 4, artikkel-id 086Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We provide and critically analyze a framework to learn critical behavior in classical partition functions through the application of non-parametric methods to data sets of thermal configurations. We illustrate our approach in phase transitions in 2D and 3D Ising models. First, we extend previous studies on the intrinsic dimension of 2D partition function data sets, by exploring the effect of volume in 3D Ising data. We find that as opposed to 2D systems for which this quantity has been successfully used in unsupervised characterizations of critical phenomena, in the 3D case its estimation is far more challenging. To circumvent this limitation, we then use the principal component analysis (PCA) entropy, a "Shannon entropy" of the normalized spectrum of the covariance matrix. We find a striking qualitative similarity to the thermodynamic entropy, which the PCA entropy approaches asymptotically. The latter allows us to extract-through a conventional finite-size scaling analysis with modest lattice sizes-the critical temperature with less than 1% error for both 2D and 3D models while being computationally efficient. The PCA entropy can readily be applied to characterize correlations and critical phenomena in a huge variety of many-body problems and suggests a (direct) link between easy-to-compute quantities and entropies.

sted, utgiver, år, opplag, sider
2023. Vol. 6, nr 4, artikkel-id 086
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-225651DOI: 10.21468/SciPostPhysCore.6.4.086ISI: 001125715400001Scopus ID: 2-s2.0-85180327095OAI: oai:DiVA.org:su-225651DiVA, id: diva2:1830024
Tilgjengelig fra: 2024-01-22 Laget: 2024-01-22 Sist oppdatert: 2024-01-22bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Sun, Hanlin

Søk i DiVA

Av forfatter/redaktør
Sun, Hanlin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 29 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf