Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Large sample covariance matrices of Gaussian observations with uniform correlation decay
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.ORCID-id: 0000-0002-4680-8836
2023 (engelsk)Inngår i: Stochastic Processes and their Applications, ISSN 0304-4149, E-ISSN 1879-209X, Vol. 162, s. 456-480Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

We derive the Marchenko–Pastur (MP) law for sample covariance matrices of the form , where X is a p × n data matrix and p/ny ∈ (0,∞) as n, p → ∞. We assume the data in X stems from a correlated joint normal distribution. In particular, the correlation acts both across rows and across columns of X, and we do not assume a specific correlation structure, such as separable dependencies. Instead, we assume that correlations converge uniformly to zero at a speed of an/n, where an may grow mildly to infinity. We employ the method of moments tightly: We identify the exact condition on the growth of an which will guarantee that the moments of the empirical spectral distributions (ESDs) converge to the MP moments. If the condition is not met, we can construct an ensemble for which all but finitely many moments of the ESDs diverge. We also investigate the operator norm of Vn under a uniform correlation bound of C/nδ, where C, δ > 0 are fixed, and observe a phase transition at δ = 1. In particular, convergence of the operator norm to the maximum of the support of the MP distribution can only be guaranteed if δ > 1. The analysis leads to an example for which the MP law holds almost surely, but the operator norm remains stochastic in the limit, and we provide its exact limiting distribution.

sted, utgiver, år, opplag, sider
2023. Vol. 162, s. 456-480
Emneord [en]
Sample covariance matrices, Marchenko–Pastur law, Correlated Gaussian, Operator norm
HSV kategori
Forskningsprogram
matematisk statistik
Identifikatorer
URN: urn:nbn:se:su:diva-226668DOI: 10.1016/j.spa.2023.04.020ISI: 001008675100001Scopus ID: 2-s2.0-85162797843OAI: oai:DiVA.org:su-226668DiVA, id: diva2:1837813
Tilgjengelig fra: 2024-02-14 Laget: 2024-02-14 Sist oppdatert: 2024-02-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Heiny, Johannes

Søk i DiVA

Av forfatter/redaktør
Heiny, Johannes
Av organisasjonen
I samme tidsskrift
Stochastic Processes and their Applications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 22 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf