Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Spatial landmark detection and tissue registration with deep learning
Vise andre og tillknytning
Rekke forfattare: 72024 (engelsk)Inngår i: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 21, s. 673-679Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Spatial landmarks are crucial in describing histological features between samples or sites, tracking regions of interest in microscopy, and registering tissue samples within a common coordinate framework. Although other studies have explored unsupervised landmark detection, existing methods are not well-suited for histological image data as they often require a large number of images to converge, are unable to handle nonlinear deformations between tissue sections and are ineffective for z-stack alignment, other modalities beyond image data or multimodal data. We address these challenges by introducing effortless landmark detection, a new unsupervised landmark detection and registration method using neural-network-guided thin-plate splines. Our proposed method is evaluated on a diverse range of datasets including histology and spatially resolved transcriptomics, demonstrating superior performance in both accuracy and stability compared to existing approaches. Effortless landmark detection is an unsupervised deep learning-based approach that addresses key challenges in landmark detection and image registration for accurate performance across diverse tissue imaging datasets.

sted, utgiver, år, opplag, sider
2024. Vol. 21, s. 673-679
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-227723DOI: 10.1038/s41592-024-02199-5ISI: 001178071600001PubMedID: 38438615Scopus ID: 2-s2.0-85186550191OAI: oai:DiVA.org:su-227723DiVA, id: diva2:1847188
Tilgjengelig fra: 2024-03-26 Laget: 2024-03-26 Sist oppdatert: 2025-02-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Olegård, Johannes

Søk i DiVA

Av forfatter/redaktør
Andersson, AlmaOlegård, Johannes
Av organisasjonen
I samme tidsskrift
Nature Methods

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 45 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf