Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Harmful Communication: Detection of Toxic Language and Threats on Swedish
Mind Intelligence Lab, Uppsala, Sweden.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.ORCID-id: 0000-0002-3724-7504
Uppsala Universitet, Uppsala, Sweden.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Vise andre og tillknytning
Rekke forfattare: 52024 (engelsk)Inngår i: 2023 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Association for Computing Machinery (ACM) , 2024, s. 624-630Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Harmful communication, such as toxic language and threats directed toward individuals or groups, is a common problem on most social media platforms and online spaces. While several approaches exist for detecting toxic language and threats in English, few attempts have detected such communication in Swedish. Thus, we used transfer learning and BERT to train two machine learning models: one that detects toxic language and one that detects threats in Swedish. We also examined the intersection between toxicity and threat. The models are trained on data from several different sources, with authentic social media posts and data translated from English. Our models perform well on test data with an F1-score above 0.94 for detecting toxic language and 0.86 for detecting threats. However, the models' performance decreases significantly when they are applied to new unseen social media data. Examining the intersection between toxic language and threats, we found that 20\% of the threats on social media are not toxic, which means that they would not be detected using only methods for detecting toxic language. Our finding highlights the difficulties with harmful language and the need to use different methods to detect different kinds of harmful language.

sted, utgiver, år, opplag, sider
Association for Computing Machinery (ACM) , 2024. s. 624-630
Emneord [en]
toxic language, hate speech, threats
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-228009DOI: 10.1145/3625007.3627597ISI: 001191293500099Scopus ID: 2-s2.0-85190627665ISBN: 979-8-4007-0409-3 (tryckt)OAI: oai:DiVA.org:su-228009DiVA, id: diva2:1849588
Konferanse
ASONAM '23: International Conference on Advances in Social Networks Analysis and Mining, 6-9 november 2023, Kusadasi Turkiye.
Tilgjengelig fra: 2024-04-08 Laget: 2024-04-08 Sist oppdatert: 2024-11-14bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Lindén, Kevin

Søk i DiVA

Av forfatter/redaktør
Kaati, LisaLindén, KevinMoshfegh, Arvin
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 42 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf