Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
MASICU: A Multimodal Attention-based classifier for Sepsis mortality prediction in the ICU
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.ORCID-id: 0000-0002-7693-0576
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.ORCID-id: 0000-0002-1357-1967
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.ORCID-id: 0000-0002-4632-4815
Rekke forfattare: 42024 (engelsk)Inngår i: 2024 IEEE 37th International Symposium on Computer-Based Medical Systems (CBMS), IEEE (Institute of Electrical and Electronics Engineers) , 2024, s. 326-331Konferansepaper, Publicerat paper (Fagfellevurdert)
Abstract [en]

Sepsis poses a significant threat to public health, causing millions of deaths annually. While treatable with timely intervention, accurately identifying at-risk patients remains challenging due to the condition’s complexity. Traditional scoring systems have been utilized, but their effectiveness has waned over time. Recognizing the need for comprehensive assessment, we introduce MASICU, a novel machine learning model architecture tailored for predicting ICU sepsis mortality. MASICU is a novel multimodal, attention-based classification model that integrates interpretability within an ICU setting. Our model incorporates multiple modalities and multimodal fusion strategies and prioritizes interpretability through different attention mechanisms. By leveraging both static and temporal features, MASICU offers a holistic view of the patient’s clinical status, enhancing predictive accuracy while providing clinically relevant insights.

sted, utgiver, år, opplag, sider
IEEE (Institute of Electrical and Electronics Engineers) , 2024. s. 326-331
Serie
IEEE International Symposium on Computer-Based Medical Systems, ISSN 2372-918X, E-ISSN 2372-9198
Emneord [en]
Head, Attention mechanisms, Accuracy, Computer architecture, Predictive models, Sepsis, Magnetic heads, Multimodal, Attention, ICU, Mortality Prediction
HSV kategori
Forskningsprogram
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-233746DOI: 10.1109/CBMS61543.2024.00061ISI: 001284700700024Scopus ID: 2-s2.0-85200517080ISBN: 979-8-3503-8472-7 (tryckt)OAI: oai:DiVA.org:su-233746DiVA, id: diva2:1900695
Konferanse
2024 IEEE 37th International Symposium on Computer-Based Medical Systems (CBMS), 26-28 June 20204, Guadalajara, Mexico.
Tilgjengelig fra: 2024-09-24 Laget: 2024-09-24 Sist oppdatert: 2024-09-26bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Mondrejevski, LenaRugolon, FrancoMiliou, IoannaPapapetrou, Panagiotis

Søk i DiVA

Av forfatter/redaktør
Mondrejevski, LenaRugolon, FrancoMiliou, IoannaPapapetrou, Panagiotis
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetric

doi
isbn
urn-nbn
Totalt: 93 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf