Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Detailed cool star flare morphology with CHEOPS and TESS
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi.ORCID-id: 0000-0001-6994-9159
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi.ORCID-id: 0000-0002-7201-7536
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för astronomi. Stockholms universitet, Naturvetenskapliga fakulteten, Oskar Klein-centrum för kosmopartikelfysik (OKC).ORCID-id: 0000-0003-3747-7120
Vise andre og tillknytning
Rekke forfattare: 822024 (engelsk)Inngår i: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 686, artikkel-id A239Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

Context. White-light stellar flares are proxies for some of the most energetic types of flares, but their triggering mechanism is still poorly understood. As they are associated with strong X and ultraviolet emission, their study is particularly relevant to estimate the amount of high-energy irradiation onto the atmospheres of exoplanets, especially those in their stars’ habitable zone. Aims. We used the high-cadence, high-photometric capabilities of the CHEOPS and TESS space telescopes to study the detailed morphology of white-light flares occurring in a sample of 130 late-K and M stars, and compared our findings with results obtained at a lower cadence. Methods. We employed dedicated software for the reduction of 3 s cadence CHEOPS data, and adopted the 20 s cadence TESS data reduced by their official processing pipeline. We developed an algorithm to separate multi-peak flare profiles into their components, in order to contrast them to those of single-peak, classical flares. We also exploited this tool to estimate amplitudes and periodicities in a small sample of quasi-periodic pulsation (QPP) candidates. Results. Complex flares represent a significant percentage (≳30%) of the detected outburst events. Our findings suggest that high-impulse flares are more frequent than suspected from lower-cadence data, so that the most impactful flux levels that hit close-in exoplanets might be more time-limited than expected. We found significant differences in the duration distributions of single and complex flare components, but not in their peak luminosity. A statistical analysis of the flare parameter distributions provides marginal support for their description with a log-normal instead of a power-law function, leaving the door open to several flare formation scenarios. We tentatively confirmed previous results about QPPs in high-cadence photometry, report the possible detection of a pre-flare dip, and did not find hints of photometric variability due to an undetected flare background. Conclusions. The high-cadence study of stellar hosts might be crucial to evaluate the impact of their flares on close-in exoplanets, as their impulsive phase emission might otherwise be incorrectly estimated. Future telescopes such as PLATO and Ariel, thanks to their high-cadence capability, will help in this respect. As the details of flare profiles and of the shape of their parameter distributions are made more accessible by continuing to increase the instrument precision and time resolution, the models used to interpret them and their role in star-planet interactions might need to be updated constantly.

sted, utgiver, år, opplag, sider
2024. Vol. 686, artikkel-id A239
Emneord [en]
methods: data analysis, planetary systems, stars: activity, stars: flare, techniques: photometric
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-235533DOI: 10.1051/0004-6361/202348951ISI: 001250131100008Scopus ID: 2-s2.0-85196518721OAI: oai:DiVA.org:su-235533DiVA, id: diva2:1913339
Tilgjengelig fra: 2024-11-14 Laget: 2024-11-14 Sist oppdatert: 2025-10-07bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstScopus

Person

Florén, Hans Gustav AxelBrandeker, AlexisOlofsson, Göran

Søk i DiVA

Av forfatter/redaktør
Florén, Hans Gustav AxelBrandeker, AlexisOlofsson, Göran
Av organisasjonen
I samme tidsskrift
Astronomy and Astrophysics

Søk utenfor DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric

doi
urn-nbn
Totalt: 28 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf