Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Dissected antiporter modules establish minimal proton-conduction elements of the respiratory complex I
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.ORCID-id: 0000-0003-2575-9913
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.ORCID-id: 0000-0002-2964-5908
Vise andre og tillknytning
Rekke forfattare: 102024 (engelsk)Inngår i: Nature Communications, E-ISSN 2041-1723, Vol. 15, nr 1, artikkel-id 9098Artikkel i tidsskrift (Fagfellevurdert) Published
Abstract [en]

The respiratory Complex I is a highly intricate redox-driven proton pump that powers oxidative phosphorylation across all domains of life. Yet, despite major efforts in recent decades, its long-range energy transduction principles remain highly debated. We create here minimal proton-conducting membrane modules by engineering and dissecting the key elements of the bacterial Complex I. By combining biophysical, biochemical, and computational experiments, we show that the isolated antiporter-like modules of Complex I comprise all functional elements required for conducting protons across proteoliposome membranes. We find that the rate of proton conduction is controlled by conformational changes of buried ion-pairs that modulate the reaction barriers by electric field effects. The proton conduction is also modulated by bulky residues along the proton channels that are key for establishing a tightly coupled proton pumping machinery in Complex I. Our findings provide direct experimental evidence that the individual antiporter modules are responsible for the proton transport activity of Complex I. On a general level, our findings highlight electrostatic and conformational coupling mechanisms in the modular energy-transduction machinery of Complex I with distinct similarities to other enzymes.

sted, utgiver, år, opplag, sider
2024. Vol. 15, nr 1, artikkel-id 9098
HSV kategori
Identifikatorer
URN: urn:nbn:se:su:diva-236913DOI: 10.1038/s41467-024-53194-5ISI: 001340396900003PubMedID: 39438463Scopus ID: 2-s2.0-85207203766OAI: oai:DiVA.org:su-236913DiVA, id: diva2:1919846
Tilgjengelig fra: 2024-12-10 Laget: 2024-12-10 Sist oppdatert: 2025-08-04bibliografisk kontrollert
Inngår i avhandling
1. Exploring Energy Conversion Mechanisms in Respiratory Enzymes
Åpne denne publikasjonen i ny fane eller vindu >>Exploring Energy Conversion Mechanisms in Respiratory Enzymes
2025 (engelsk)Doktoravhandling, med artikler (Annet vitenskapelig)
Abstract [en]

All life fundamentally relies on the efficient capture and conversion of energy into forms that support vital biochemical processes. Central to this process is the respiratory chain, a set of membrane-bound protein complexes that harness energy-rich molecules to drive ion translocation across biological membranes. This process generates an electrochemical gradient, known as the proton motive force (pmf) or sodium motive force (smf), that in turn powers the synthesis of ATP, the universal energy currency of the cell. In this thesis, the mechanistic principles underlying the function of respiratory enzymes are explored using a combination of classical molecular dynamics simulations, quantum mechanical methods, and hybrid quantum mechanics/molecular mechanics (QM/MM) calculations.

The respiratory Complex I couples the oxidation of NADH and the reduction of quinone to the translocation of four protons across biological membranes. Our results indicate that this coupling is mediated by a network of charged residues. Switching within this network triggers a conformational change of a key gating residue, thereby linking the redox reaction to ion translocation. Additionally, we identify proton translocation pathways through the membrane domain of Complex I, whose dynamics are governed by the conformation of conserved ion pairs. We investigate the mechanism of oxygen reduction and quinol oxidation by the alternative oxidase (AOX), and find that the diiron center forms a ferryl/ferric intermediate, which is reduced by the quinol in a highly exothermic reaction. To understand what drives supercomplex (SC) formation, we analyze their membrane interactions and observe that the association of Complex I and III2 into SCs reduces membrane strain. Finally, we examine the redox-coupled Na+ translocation mechanism of the Rnf complex and identify conformation dependent Na+ binding sites, based on which we propose a mechanism for ion transport. Together, the results presented in this thesis provide new insights into the mechanistic principles that govern membrane-bound respiratory enzymes.

sted, utgiver, år, opplag, sider
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2025. s. 68
Emneord
Bioenergetics, Respiratory Enzymes, Proton Transfer, Energy Transduction, Multiscale Simulations
HSV kategori
Forskningsprogram
biokemi
Identifikatorer
urn:nbn:se:su:diva-245310 (URN)978-91-8107-336-2 (ISBN)978-91-8107-337-9 (ISBN)
Disputas
2025-09-22, Hörsal 8, Hus D, Universitetsvägen 14 and online via Zoom, public link is available at the department website, Stockholm, 09:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2025-08-28 Laget: 2025-08-04 Sist oppdatert: 2025-08-20bibliografisk kontrollert

Open Access i DiVA

Fulltekst mangler i DiVA

Andre lenker

Forlagets fulltekstPubMedScopus

Person

Saura, PatriciaKim, HyunhoGamiz-Hernandez, Ana P.Berg, JohanKemp, GrantKaila, Ville R. I.

Søk i DiVA

Av forfatter/redaktør
Saura, PatriciaKim, HyunhoGamiz-Hernandez, Ana P.Berg, JohanKemp, GrantKaila, Ville R. I.
Av organisasjonen
I samme tidsskrift
Nature Communications

Søk utenfor DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetric

doi
pubmed
urn-nbn
Totalt: 61 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf