Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Model categories, pro-categories and functors
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This thesis consists of five papers. The first three are concerned with various model structures on ind- and pro-categories, while the last two are concerned with the homotopy theory of functors.

In Paper I, a general method for constructing simplicial model structures on ind- and pro-categories is described and its basic properties are studied. This method is particularly useful for constructing "profinite" analogues of known model categories. It recovers various known model structures and also constructs many interesting new model structures. 

In Paper II, it is shown that a profinite completion functor for (simplicial or topological) operads with good homotopical properties can be constructed as a left Quillen functor from an appropriate model category of infinity-operads to a certain model category of profinite infinity-operads. The construction of the latter model category is inspired by the method described in Paper I, but there are a few subtle differences that make its construction more involved.

In Paper III, the general method from Paper I is used to give an alternative proof of a result by Arone, Barnea and Schlank. This result states that the stabilization of the category of noncommutative CW-complexes can be modelled as the category of spectral presheaves on a certain category M. The advantage of this alternative proof is that it mainly relies on well-known results on (stable) model categories.

In Paper IV, the question of whether an ordinary functor between enriched categories is equivalent to an enriched functor is addressed. This is done for several types of enrichments: namely when the base of enrichment is (pointed) topological spaces, (pointed) simplicial sets or orthogonal spectra. Simple criteria are obtained under which this question has a positive answer.

In Paper V, the Goodwillie calculus of functors between categories of enriched diagram spaces is described. It is shown that the layers of the Goodwillie tower are classified by certain types of diagrams in spectra, directly generalizing Goodwillie's original classification. Using this classification, an operad structure on the derivatives of the identity functor is constructed that generalizes an operad structure originally constructed by Ching.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Mathematics, Stockholm University , 2023. , s. 43
Nyckelord [en]
Homotopy theory, Quillen model categories, Pro-categories, Enriched categories, Goodwillie calculus
Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-215391ISBN: 978-91-8014-232-8 (tryckt)ISBN: 978-91-8014-233-5 (digital)OAI: oai:DiVA.org:su-215391DiVA, id: diva2:1742833
Disputation
2023-05-25, lärosal 4, hus 1, Albano, Albanovägen 28, Stockholm, 13:15 (Engelska)
Opponent
Handledare
Tillgänglig från: 2023-05-02 Skapad: 2023-03-12 Senast uppdaterad: 2023-03-27Bibliografiskt granskad
Delarbeten
1. Simplicial model structures on pro-categories
Öppna denna publikation i ny flik eller fönster >>Simplicial model structures on pro-categories
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We describe a method for constructing simplicial model structures on ind- and pro-categories. Our method is particularly useful for constructing "profinite" analogues of known model categories. Our construction quickly recovers Morel's model structure for pro-p spaces and Quick's model structure for profinite spaces, but we will show that it can also be applied to construct many interesting new model structures. In addition, we study some general properties of our method, such as its functorial behaviour and its relation to Bousfield localization. We compare our construction to the ∞-categorical approach to ind- and pro-categories in an appendix.

Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:su:diva-197652 (URN)
Tillgänglig från: 2021-10-12 Skapad: 2021-10-12 Senast uppdaterad: 2023-03-12Bibliografiskt granskad
2. Profinite ∞-operads
Öppna denna publikation i ny flik eller fönster >>Profinite ∞-operads
2022 (Engelska)Ingår i: Advances in Mathematics, ISSN 0001-8708, E-ISSN 1090-2082, Vol. 408, artikel-id 108601Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We show that a profinite completion functor for (simplicial or topological) operads with good homotopical properties can be constructed as a left Quillen functor from an appropriate model category of ∞-operads to a certain model category of profinite ∞-operads. The construction is based on a notion of lean ∞-operad, and we characterize those ∞-operads weakly equivalent to lean ones in terms of homotopical finiteness properties. Several variants of the construction are also discussed, such as the cases of unital (or closed) ∞-operads and of ∞-categories. 

Nyckelord
Dendroidal sets, Infinity-operads, Lean infinity-operads, Profinite completion, Quillen model categories
Nationell ämneskategori
Matematik
Identifikatorer
urn:nbn:se:su:diva-211817 (URN)10.1016/j.aim.2022.108601 (DOI)000860763500003 ()2-s2.0-85135502790 (Scopus ID)
Tillgänglig från: 2022-11-28 Skapad: 2022-11-28 Senast uppdaterad: 2023-03-12Bibliografiskt granskad
3. A note on noncommutative CW-spectra
Öppna denna publikation i ny flik eller fönster >>A note on noncommutative CW-spectra
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We use the machinery of Paper I to give an alternative proof of one of the main results of [ABS21]. This result states that the category of noncommutative CW-spectra can be modelled as the category of spectral presheaves on a certain category M, whose objects can be thought of as “suspension spectra of matrix algebras”. The advantage of our proof is that it mainly relies on well-known results on (stable) model categories.

Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:su:diva-197659 (URN)
Tillgänglig från: 2021-10-12 Skapad: 2021-10-12 Senast uppdaterad: 2023-03-12Bibliografiskt granskad
4. Replacing functors with enriched ones
Öppna denna publikation i ny flik eller fönster >>Replacing functors with enriched ones
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We describe simple criteria under which a given functor is naturally equivalent to an enriched one. We do this for several bases of enrichment, namely (pointed) simplicial sets, (pointed) topological spaces and orthogonal spectra. We also describe a few corollaries, such as a result on simplicial Dwyer-Kan localizations that may be of independent interest.

Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:su:diva-215388 (URN)
Tillgänglig från: 2023-03-12 Skapad: 2023-03-12 Senast uppdaterad: 2023-03-12
5. Goodwillie calculus for diagram categories
Öppna denna publikation i ny flik eller fönster >>Goodwillie calculus for diagram categories
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We describe the Goodwillie calculus of functors between categories of enriched diagrams and generalize Goodwillie’s classification of n-homogeneous functors to this setting. Using this classification, we construct an operad structure on the derivatives of the identity functor from TopC to itself that directly generalizes Ching’s operad structure on the derivatives of the identity functor from Top to itself.

Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:su:diva-215389 (URN)
Tillgänglig från: 2023-03-12 Skapad: 2023-03-12 Senast uppdaterad: 2023-03-12

Open Access i DiVA

Model categories, pro-categories and functors(977 kB)247 nedladdningar
Filinformation
Filnamn FULLTEXT03.pdfFilstorlek 977 kBChecksumma SHA-512
f2da6f11f6e266342bd8a31ea3b7bcf1373824309bfb21c5ec0319452d35940fd7d0ef469ea5500c46f74c7e5752261fd47e02a5693f5c647f03369e482ade52
Typ fulltextMimetyp application/pdf

Person

Blom, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Blom, Thomas
Av organisationen
Matematiska institutionen
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 248 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 992 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf