Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Probing pteridine coloration in Pieridae butterflies: investigating their co-option to understand wing color evolution
Stockholms universitet, Naturvetenskapliga fakulteten, Zoologiska institutionen.ORCID-id: 0000-0002-5285-1531
Stockholms universitet, Naturvetenskapliga fakulteten, Zoologiska institutionen, Avdelningen för populationsgenetik. Stockholms universitet, Naturvetenskapliga fakulteten, Zoologiska institutionen, Avdelningen för zoologisk systematik och evolutionsforskning.ORCID-id: 0000-0003-1863-2340
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

The intriguing coloration and patterning of butterfly wings have served as a cornerstone for understanding complex phenotypes and gene regulatory network (GRN) evolution. Here we investigate the pteridine pigment biosynthesis pathway in Pieridae butterflies, which produces their characteristic white, yellow, and orange hues. In light of the widespread evolution of complex traits via recruitment of existing GRNs, we investigate both the mechanisms and evolutionary history of the use of pteridines in Pieridae wings. Utilizing CRISPR/Cas9-induced gene knockouts (KOs), we probed two genes, SPR and Purple, critical to pteridine biosynthesis. The pleiotropic consequences of these KOs provide us with insights into extended phenotypic context and use of pteridine beyond wing coloration.

Our results confirmed that both SPR and Purple regulate pteridine formation but challenge existing models of pteridine biosynthesis. We additionally observed that pteridine is not only involved in wing color, but all body scales, enhancing our understanding of pteridine function across adult tissues. Lastly, we found that the granule structure that contains the pteridine, and is unique to pteridine pigmentation, appears to be ubiquitous to all scale types as well as all major clades of Pierid butterflies, potentially indicating representing an evolutionary novelty for Pieridae. 

Nationell ämneskategori
Evolutionsbiologi Genetik och genomik Utvecklingsbiologi
Identifikatorer
URN: urn:nbn:se:su:diva-219754OAI: oai:DiVA.org:su-219754DiVA, id: diva2:1784645
Tillgänglig från: 2023-07-28 Skapad: 2023-07-28 Senast uppdaterad: 2025-02-01
Ingår i avhandling
1. Understanding evolutionary novelty through female-limited polymorphisms
Öppna denna publikation i ny flik eller fönster >>Understanding evolutionary novelty through female-limited polymorphisms
2023 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Understanding how novel traits evolve is a central question in evolutionary biology. However, unraveling the complex genetic and developmental mechanisms underlying trait innovation can be challenging, especially when the trait evolved a long time ago. One approach to this complexity is to leverage natural polymorphisms, revealing variation in the expression or function of novel traits. Polymorphisms can provide insights into the origin, maintenance, and diversification of trait innovation, and the evolutionary forces and constraints shaping them. Sex-limited polymorphisms, a special class of polymorphism in which only one sex exhibits variation in the trait, can be particularly informative because they allow for the investigation of not only the genetic basis and evolutionary history of novel traits, but also how differences between sexes (sexual dimorphisms) are regulated and evolve.

In my thesis, I utilize naturally occurring female-limited color polymorphisms to answer questions about the evolutionary origin, mechanism, and maintenance of wing coloration and patterning variation in butterflies.  Butterfly wing coloration and patterning are not only striking examples of morphological diversity but also critical to survival and fitness. While butterfly wing patterning and coloration have inspired evolutionary thinking  for over a century, they have recently become a model system for Evo-Devo research. As easily visually assessed traits, butterfly wings have proven perfect candidates for more recent advances in Evo-Devo, acting as a template for understanding the function, recruitment, and evolution of gene regulatory networks (GRNs) generating complex phenotypes. 

In Paper I, I reconstruct the evolutionary history of Alba, a genetically determined female-limited alternative life history strategy, found in over one third of species in the genus Colias (Pieridae). In this polymorphism, some Colias females redirect resources from wing coloration to reproductive development, resulting in white rather than orange wings. I show this polymorphism evolved once in the Colias phylogeny through a transposable element insertion and has persisted for over a million years through balancing selection and introgression. In Paper II, I dissect the pteridine biosynthesis pathway, a pigment that Pierid butterflies, including Colias, use to color their wings. I highlight not only the extent of pteridine use by Pierid butterflies, but also evidence suggesting novel evolution for core components of the biosynthesis pathway. In Paper III, I investigate the genetic basis of a regionally isolated sexual dimorphism in Pieris napi, called adalvinda. Rather than the creamy white wings seen in the rest of the range, females in northern Scandinavian populations have highly melanized, almost dark brown wings. Similarly to Paper I, I in Paper III identify a transposable element insertion, but this time upstream of the gene cortex associated with female wing melanization. This finding contributes to a growing body of literature linking cortex with butterfly wing melanization, while emphasizing the potential role transposable elements may play in the evolution of novel – and especially female-limited or sexually dimorphic – traits. Lastly, in Paper IV, I present a new reference genome for the Edith's Checkerspot butterfly, offering an important resource for future functional genomic and conservation analyses, and demonstrating an efficient framework for developing genetic resources for non-model systems. 

In summary, my thesis demonstrates the powerful potential of utilizing naturally occurring polymorphisms or induced mutations to study the evolution of novel traits.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Zoology, Stockholm University, 2023. s. 34
Nationell ämneskategori
Evolutionsbiologi
Forskningsämne
populationsgenetik
Identifikatorer
urn:nbn:se:su:diva-219759 (URN)978-91-8014-428-5 (ISBN)978-91-8014-429-2 (ISBN)
Disputation
2023-09-08, Vivi Täckholmsalen (Q-salen), NPQ-huset, Svante Arrhenius väg 20, Stockholm, 13:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2023-08-16 Skapad: 2023-07-31 Senast uppdaterad: 2023-08-09Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Person

Tunström, KalleWheat, Christopher W.

Sök vidare i DiVA

Av författaren/redaktören
Tunström, KalleWheat, Christopher W.
Av organisationen
Zoologiska institutionenAvdelningen för populationsgenetikAvdelningen för zoologisk systematik och evolutionsforskning
EvolutionsbiologiGenetik och genomikUtvecklingsbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

urn-nbn

Altmetricpoäng

urn-nbn
Totalt: 317 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf