Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Non-parametric learning critical behavior in Ising partition functions: PCA entropy and intrinsic dimension
Stockholms universitet, Nordiska institutet för teoretisk fysik (Nordita). Queen Mary University of London [QMUL], United Kingdom.ORCID-id: 0000-0003-1606-1257
Visa övriga samt affilieringar
Antal upphovsmän: 62023 (Engelska)Ingår i: Scipost Physics Core, ISSN 2666-9366, Vol. 6, nr 4, artikel-id 086Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We provide and critically analyze a framework to learn critical behavior in classical partition functions through the application of non-parametric methods to data sets of thermal configurations. We illustrate our approach in phase transitions in 2D and 3D Ising models. First, we extend previous studies on the intrinsic dimension of 2D partition function data sets, by exploring the effect of volume in 3D Ising data. We find that as opposed to 2D systems for which this quantity has been successfully used in unsupervised characterizations of critical phenomena, in the 3D case its estimation is far more challenging. To circumvent this limitation, we then use the principal component analysis (PCA) entropy, a "Shannon entropy" of the normalized spectrum of the covariance matrix. We find a striking qualitative similarity to the thermodynamic entropy, which the PCA entropy approaches asymptotically. The latter allows us to extract-through a conventional finite-size scaling analysis with modest lattice sizes-the critical temperature with less than 1% error for both 2D and 3D models while being computationally efficient. The PCA entropy can readily be applied to characterize correlations and critical phenomena in a huge variety of many-body problems and suggests a (direct) link between easy-to-compute quantities and entropies.

Ort, förlag, år, upplaga, sidor
2023. Vol. 6, nr 4, artikel-id 086
Nationell ämneskategori
Den kondenserade materiens fysik
Identifikatorer
URN: urn:nbn:se:su:diva-225651DOI: 10.21468/SciPostPhysCore.6.4.086ISI: 001125715400001Scopus ID: 2-s2.0-85180327095OAI: oai:DiVA.org:su-225651DiVA, id: diva2:1830024
Tillgänglig från: 2024-01-22 Skapad: 2024-01-22 Senast uppdaterad: 2024-01-22Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Sun, Hanlin

Sök vidare i DiVA

Av författaren/redaktören
Sun, Hanlin
Av organisationen
Nordiska institutet för teoretisk fysik (Nordita)
Den kondenserade materiens fysik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 28 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf