Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Large sample covariance matrices of Gaussian observations with uniform correlation decay
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.ORCID-id: 0000-0002-4680-8836
2023 (Engelska)Ingår i: Stochastic Processes and their Applications, ISSN 0304-4149, E-ISSN 1879-209X, Vol. 162, s. 456-480Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

We derive the Marchenko–Pastur (MP) law for sample covariance matrices of the form , where X is a p × n data matrix and p/ny ∈ (0,∞) as n, p → ∞. We assume the data in X stems from a correlated joint normal distribution. In particular, the correlation acts both across rows and across columns of X, and we do not assume a specific correlation structure, such as separable dependencies. Instead, we assume that correlations converge uniformly to zero at a speed of an/n, where an may grow mildly to infinity. We employ the method of moments tightly: We identify the exact condition on the growth of an which will guarantee that the moments of the empirical spectral distributions (ESDs) converge to the MP moments. If the condition is not met, we can construct an ensemble for which all but finitely many moments of the ESDs diverge. We also investigate the operator norm of Vn under a uniform correlation bound of C/nδ, where C, δ > 0 are fixed, and observe a phase transition at δ = 1. In particular, convergence of the operator norm to the maximum of the support of the MP distribution can only be guaranteed if δ > 1. The analysis leads to an example for which the MP law holds almost surely, but the operator norm remains stochastic in the limit, and we provide its exact limiting distribution.

Ort, förlag, år, upplaga, sidor
2023. Vol. 162, s. 456-480
Nyckelord [en]
Sample covariance matrices, Marchenko–Pastur law, Correlated Gaussian, Operator norm
Nationell ämneskategori
Sannolikhetsteori och statistik
Forskningsämne
matematisk statistik
Identifikatorer
URN: urn:nbn:se:su:diva-226668DOI: 10.1016/j.spa.2023.04.020ISI: 001008675100001Scopus ID: 2-s2.0-85162797843OAI: oai:DiVA.org:su-226668DiVA, id: diva2:1837813
Tillgänglig från: 2024-02-14 Skapad: 2024-02-14 Senast uppdaterad: 2024-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Heiny, Johannes

Sök vidare i DiVA

Av författaren/redaktören
Heiny, Johannes
Av organisationen
Matematiska institutionen
I samma tidskrift
Stochastic Processes and their Applications
Sannolikhetsteori och statistik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 22 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf