Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Spatial landmark detection and tissue registration with deep learning
Visa övriga samt affilieringar
Antal upphovsmän: 72024 (Engelska)Ingår i: Nature Methods, ISSN 1548-7091, E-ISSN 1548-7105, Vol. 21, s. 673-679Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Spatial landmarks are crucial in describing histological features between samples or sites, tracking regions of interest in microscopy, and registering tissue samples within a common coordinate framework. Although other studies have explored unsupervised landmark detection, existing methods are not well-suited for histological image data as they often require a large number of images to converge, are unable to handle nonlinear deformations between tissue sections and are ineffective for z-stack alignment, other modalities beyond image data or multimodal data. We address these challenges by introducing effortless landmark detection, a new unsupervised landmark detection and registration method using neural-network-guided thin-plate splines. Our proposed method is evaluated on a diverse range of datasets including histology and spatially resolved transcriptomics, demonstrating superior performance in both accuracy and stability compared to existing approaches. Effortless landmark detection is an unsupervised deep learning-based approach that addresses key challenges in landmark detection and image registration for accurate performance across diverse tissue imaging datasets.

Ort, förlag, år, upplaga, sidor
2024. Vol. 21, s. 673-679
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
URN: urn:nbn:se:su:diva-227723DOI: 10.1038/s41592-024-02199-5ISI: 001178071600001PubMedID: 38438615Scopus ID: 2-s2.0-85186550191OAI: oai:DiVA.org:su-227723DiVA, id: diva2:1847188
Tillgänglig från: 2024-03-26 Skapad: 2024-03-26 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextPubMedScopus

Person

Olegård, Johannes

Sök vidare i DiVA

Av författaren/redaktören
Andersson, AlmaOlegård, Johannes
Av organisationen
Institutionen för data- och systemvetenskap
I samma tidskrift
Nature Methods
BiokemiMolekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
pubmed
urn-nbn

Altmetricpoäng

doi
pubmed
urn-nbn
Totalt: 45 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf