Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
General Risk Index: A Measure for Predicting Violent Behavior Through Written Communication
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.ORCID-id: 0000-0002-3724-7504
Mind Intelligence Lab, Uppsala, Sweden.
Uppsala Universitet, Uppsala, Sweden.
Antal upphovsmän: 32023 (Engelska)Ingår i: 2023 IEEE International Conference on Big Data (BigData), IEEE (Institute of Electrical and Electronics Engineers) , 2023, s. 4065-4070Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

One of the most challenging threats to the security of society is attacks from violent lone offenders. Identifying potential offenders is difficult since they act alone and do not necessarily communicate with others. However, several targeted violent attacks have been preceded by communication published on social media and the internet. Such communication is a valuable component when conducting risk and threat assessments.In this paper, we introduce a diagnostic measure of the risk of violent behavior based on text analysis. Using automated text analysis, we extract psychological variables and warning indicators from a given text and summarize these in an index that we denote as the general risk index. When developing the general risk index, we analyzed data (text) from 208 288 users on 32 online environments with diverse ideologies/orientations, including 76 previous violent lone offenders. A receiver operating characteristics (ROC) analysis showed that, when using the general risk index, it was possible to correctly classify between 90% and 96% of the cases depending on the comparison sample. These results support the predictive validity of the general risk index, suggesting that the risk index can be used to identify individuals with an increased risk of committing violent attacks that need further investigation.

Ort, förlag, år, upplaga, sidor
IEEE (Institute of Electrical and Electronics Engineers) , 2023. s. 4065-4070
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik
Forskningsämne
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-228008DOI: 10.1109/BigData59044.2023.10386789Scopus ID: 2-s2.0-85184978311ISBN: 979-8-3503-2446-4 (tryckt)OAI: oai:DiVA.org:su-228008DiVA, id: diva2:1849587
Konferens
2023 IEEE International Conference on Big Data (BigData), 15-18 December 2023, Sorrento, Italy.
Tillgänglig från: 2024-04-08 Skapad: 2024-04-08 Senast uppdaterad: 2024-04-12Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Kaati, Lisa

Sök vidare i DiVA

Av författaren/redaktören
Kaati, Lisa
Av organisationen
Institutionen för data- och systemvetenskap
Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 84 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf