Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Harmful Communication: Detection of Toxic Language and Threats on Swedish
Mind Intelligence Lab, Uppsala, Sweden.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.ORCID-id: 0000-0002-3724-7504
Uppsala Universitet, Uppsala, Sweden.
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.
Visa övriga samt affilieringar
Antal upphovsmän: 52024 (Engelska)Ingår i: 2023 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM), Association for Computing Machinery (ACM) , 2024, s. 624-630Konferensbidrag, Publicerat paper (Refereegranskat)
Abstract [en]

Harmful communication, such as toxic language and threats directed toward individuals or groups, is a common problem on most social media platforms and online spaces. While several approaches exist for detecting toxic language and threats in English, few attempts have detected such communication in Swedish. Thus, we used transfer learning and BERT to train two machine learning models: one that detects toxic language and one that detects threats in Swedish. We also examined the intersection between toxicity and threat. The models are trained on data from several different sources, with authentic social media posts and data translated from English. Our models perform well on test data with an F1-score above 0.94 for detecting toxic language and 0.86 for detecting threats. However, the models' performance decreases significantly when they are applied to new unseen social media data. Examining the intersection between toxic language and threats, we found that 20\% of the threats on social media are not toxic, which means that they would not be detected using only methods for detecting toxic language. Our finding highlights the difficulties with harmful language and the need to use different methods to detect different kinds of harmful language.

Ort, förlag, år, upplaga, sidor
Association for Computing Machinery (ACM) , 2024. s. 624-630
Nyckelord [en]
toxic language, hate speech, threats
Nationell ämneskategori
Systemvetenskap, informationssystem och informatik
Forskningsämne
data- och systemvetenskap
Identifikatorer
URN: urn:nbn:se:su:diva-228009DOI: 10.1145/3625007.3627597ISI: 001191293500099Scopus ID: 2-s2.0-85190627665ISBN: 979-8-4007-0409-3 (tryckt)OAI: oai:DiVA.org:su-228009DiVA, id: diva2:1849588
Konferens
ASONAM '23: International Conference on Advances in Social Networks Analysis and Mining, 6-9 november 2023, Kusadasi Turkiye.
Tillgänglig från: 2024-04-08 Skapad: 2024-04-08 Senast uppdaterad: 2024-11-14Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Lindén, Kevin

Sök vidare i DiVA

Av författaren/redaktören
Kaati, LisaLindén, KevinMoshfegh, Arvin
Av organisationen
Institutionen för data- och systemvetenskapStockholms universitet
Systemvetenskap, informationssystem och informatik

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
isbn
urn-nbn

Altmetricpoäng

doi
isbn
urn-nbn
Totalt: 42 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf