Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Molecular Principles of Proton-Coupled Quinone Reduction in the Membrane-Bound Superoxide Oxidase
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik.ORCID-id: 0000-0002-5641-3037
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för biokemi och biofysik. Technical University Munich, Germany.
Visa övriga samt affilieringar
2025 (Engelska)Ingår i: Journal of the American Chemical Society, ISSN 0002-7863, E-ISSN 1520-5126, Vol. 147, nr 8, s. 6866-6879Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Reactive oxygen species (ROS) are physiologically harmful radical species generated as byproducts of aerobic respiration. To detoxify ROS, most cells employ superoxide scavenging enzymes that disproportionate superoxide (O2·–) to oxygen (O2) and hydrogen peroxide (H2O2). In contrast, the membrane-bound superoxide oxidase (SOO) is a minimal 4-helical bundle protein that catalyzes the direct oxidation of O2·– to O2 and drives quinone reduction by mechanistic principles that remain unknown. Here, we combine multiscale hybrid quantum/classical (QM/MM) free energy calculations and microsecond molecular dynamics simulations with functional assays and site-directed mutagenesis experiments to probe the mechanistic principles underlying the charge transfer reactions of the superoxide-driven quinone reduction. We characterize a cluster of charged residues at the periplasmic side of the membrane that functions as a O2·– collecting antenna, initiating electron transfer via two b hemes to the active site for quinone reduction at the cytoplasmic side. Based on multidimensional QM/MM string simulations, we find that a proton-coupled electron transfer (PCET) reaction from the active site heme b and nearby histidine residues (H87, H158) results in quinol (QH2) formation, followed by proton uptake from the cytoplasmic side of the membrane. The functional relevance of the identified residues is supported by site-directed mutagenesis and activity assays, with mutations leading to inhibition of the O2·–-driven quinone reduction activity. We suggest that the charge transfer reactions could build up a proton motive force that supports the bacterial energy transduction machinery, while the PCET machinery provides unique design principles of a minimal oxidoreductase.

Ort, förlag, år, upplaga, sidor
2025. Vol. 147, nr 8, s. 6866-6879
Nyckelord [en]
Energy transduction, PCET, bioenergetics, molecular simulations, ROS
Nationell ämneskategori
Biokemi Molekylärbiologi
Identifikatorer
URN: urn:nbn:se:su:diva-232600DOI: 10.1021/jacs.4c17055ISI: 001419500900001Scopus ID: 2-s2.0-85217868943OAI: oai:DiVA.org:su-232600DiVA, id: diva2:1890698
Tillgänglig från: 2024-08-20 Skapad: 2024-08-20 Senast uppdaterad: 2025-03-07Bibliografiskt granskad
Ingår i avhandling
1. Molecular mechanism of membrane-bound energy transduction
Öppna denna publikation i ny flik eller fönster >>Molecular mechanism of membrane-bound energy transduction
2024 (Engelska)Doktorsavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

Life is a non-equilibrium state and maintaining it thus requires a constant supply of external energy. To this end, organisms consume nutrients and convert the chemical energy into the universal energy carrier ATP. The energy conversion is achieved by the respiratory chain, which comprises multiple membrane-bound enzymes that convert the chemical energy into an electrochemical proton gradient, which is stored across a biological membrane. This proton gradient is, in turn, consumed by ATP synthase to produce ATP. On a molecular level, this is realized by a series of charge transfer processes, which are catalyzed by the respiratory chain complexes I-IV. These enzymes can also combine into larger assemblies, so-called supercomplexes, although their functional role remains highly debated.

In this thesis I will discuss the function of complexes I, III, and IV as well as the mycobacterial III2IV2 obligate supercomplex and the superoxide scavenger superoxide oxidase. To elucidate key functional aspects of these enzymes we have employed computational methods together with structural data and experimental measurements. Specifically, we have investigated the mechanism of complex I deactivation, as well as the proton transfer mechanics in its membrane domain. In complex IV, we have identified a mechanism by which steroid molecules can inhibit the enzyme, and describe how electric fields can selectively direct protons along specific pathways. Moreover, we have explored long-range charge transfer mechanisms in the unique mycobacterial III2IV2 supercomplex, and investigated the mechanism of the unique, membrane-bound superoxide scavenger superoxide oxidase. The combined results shed light on the molecular mechanisms that enable these enzymes to transduce energy.

Ort, förlag, år, upplaga, sidor
Stockholm: Department of Biochemistry and Biophysics, Stockholm University, 2024. s. 42
Nyckelord
Molecular simulations, Bioenergetics, PCET, Energy transduction, Charge transfer
Nationell ämneskategori
Biofysik
Forskningsämne
biofysik
Identifikatorer
urn:nbn:se:su:diva-232605 (URN)978-91-8014-897-9 (ISBN)978-91-8014-898-6 (ISBN)
Disputation
2024-10-04, Magnéli Hall, Kemiska övningslaboratoriet, Svante Arrhenius väg 12 and online via Zoom, public link is available at the department website, Stockholm, 14:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2024-09-11 Skapad: 2024-08-21 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Riepl, DanielGellner, JonasSjöstrand, DanHögbom, MartinKaila, Ville R. I.

Sök vidare i DiVA

Av författaren/redaktören
Riepl, DanielGellner, JonasSjöstrand, DanHögbom, MartinKaila, Ville R. I.
Av organisationen
Institutionen för biokemi och biofysik
I samma tidskrift
Journal of the American Chemical Society
BiokemiMolekylärbiologi

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 214 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf