Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
An Ontology to Bridge the Clinical Management of Patients and Public Health Responses for Strengthening Infectious Disease Surveillance: Design Science Study
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.ORCID-id: 0000-0001-6708-9773
Stockholms universitet, Samhällsvetenskapliga fakulteten, Institutionen för data- och systemvetenskap.ORCID-id: 0000-0002-7416-8725
2024 (Engelska)Ingår i: JMIR Formative Research, E-ISSN 2561-326X, Vol. 8, artikel-id e53711Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Background: Novel surveillance approaches using digital technologies, including the Internet of Things (IoT), have evolved, enhancing traditional infectious disease surveillance systems by enabling real-time detection of outbreaks and reaching a wider population. However, disparate, heterogenous infectious disease surveillance systems often operate in silos due to a lack of interoperability. As a life-changing clinical use case, the COVID-19 pandemic has manifested that a lack of interoperability can severely inhibit public health responses to emerging infectious diseases. Interoperability is thus critical for building a robust ecosystem of infectious disease surveillance and enhancing preparedness for future outbreaks. The primary enabler for semantic interoperability is ontology.

Objective: This study aims to design the IoT-based management of infectious disease ontology (IoT-MIDO) to enhance data sharing and integration of data collected from IoT-driven patient health monitoring, clinical management of individual patients, and disparate heterogeneous infectious disease surveillance.

Methods: The ontology modeling approach was chosen for its semantic richness in knowledge representation, flexibility, ease of extensibility, and capability for knowledge inference and reasoning. The IoT-MIDO was developed using the basic formal ontology (BFO) as the top-level ontology. We reused the classes from existing BFO-based ontologies as much as possible to maximize the interoperability with other BFO-based ontologies and databases that rely on them. We formulated the competency questions as requirements for the ontology to achieve the intended goals.

Results: We designed an ontology to integrate data from heterogeneous sources, including IoT-driven patient monitoring, clinical management of individual patients, and infectious disease surveillance systems. This integration aims to facilitate the collaboration between clinical care and public health domains. We also demonstrate five use cases using the simplified ontological models to show the potential applications of IoT-MIDO: (1) IoT-driven patient monitoring, risk assessment, early warning, and risk management; (2) clinical management of patients with infectious diseases; (3) epidemic risk analysis for timely response at the public health level; (4) infectious disease surveillance; and (5) transforming patient information into surveillance information.

Conclusions: The development of the IoT-MIDO was driven by competency questions. Being able to answer all the formulated competency questions, we successfully demonstrated that our ontology has the potential to facilitate data sharing and integration for orchestrating IoT-driven patient health monitoring in the context of an infectious disease epidemic, clinical patient management, infectious disease surveillance, and epidemic risk analysis. The novelty and uniqueness of the ontology lie in building a bridge to link IoT-based individual patient monitoring and early warning based on patient risk assessment to infectious disease epidemic surveillance at the public health level. The ontology can also serve as a starting point to enable potential decision support systems, providing actionable insights to support public health organizations and practitioners in making informed decisions in a timely manner.

Ort, förlag, år, upplaga, sidor
2024. Vol. 8, artikel-id e53711
Nyckelord [en]
infectious disease, ontology, IoT, infectious disease surveillance, patient monitoring, infectious disease management, risk analysis, early warning, data integration, semantic interoperability, public health
Nationell ämneskategori
Folkhälsovetenskap, global hälsa och socialmedicin Systemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning
Identifikatorer
URN: urn:nbn:se:su:diva-234138DOI: 10.2196/53711Scopus ID: 2-s2.0-85205595073OAI: oai:DiVA.org:su-234138DiVA, id: diva2:1904382
Tillgänglig från: 2024-10-09 Skapad: 2024-10-09 Senast uppdaterad: 2025-02-20Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Lim, SachikoJohannesson, Paul

Sök vidare i DiVA

Av författaren/redaktören
Lim, SachikoJohannesson, Paul
Av organisationen
Institutionen för data- och systemvetenskap
I samma tidskrift
JMIR Formative Research
Folkhälsovetenskap, global hälsa och socialmedicinSystemvetenskap, informationssystem och informatik med samhällsvetenskaplig inriktning

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 50 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf