Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Investigation and Statistical Analysis of Cloud Droplet Dynamics Using Quantum Computing
Stockholms universitet, Naturvetenskapliga fakulteten, Institutionen för miljövetenskap. Veermata Jijabai Technological Institute, India.ORCID-id: 0009-0003-7141-9060
Antal upphovsmän: 42024 (Engelska)Ingår i: Journal of Computer Science, ISSN 1549-3636, E-ISSN 1552-6607, Vol. 20, nr 3, s. 344-356Artikel i tidskrift (Refereegranskat) Published
Abstract [en]

Cloud droplet dynamics is an important part of cloud physics. This element of cloud physics analyses the features of each droplet, including its size distribution, probability density and mean saturation. The cloud's structure is significantly important for the Earth's atmosphere and this structure is affected by changes in the droplet's micro-physical properties. In order to investigate and understand the dynamics of cloud droplets in both the high and low vortex areas, data obtained from Direct Numeric Simulations (DNS) are utilized. Data generated from simulations of cumulus clouds, which are defined as low-level clouds located between 800 and 1200 m above the surface of the earth. DNS data reveals complex droplet dynamics on a scale that is three-dimensional. When employing conventional machine learning methods, the processing of data relating to dynamic droplets requires a substantial amount of CPU resources. In this study, we discussed the advantages of using quantum mechanisms in cloud physics in order to investigate the complicated nature of cloud droplets. The use of quantum computing in the study of droplet dynamics using the quantum k-mean approach was further investigated in the discussion. Quantum machine learning is used to study the micro-physical characteristics of cloud droplets in order to investigate the effect that droplet dynamics have on the overall structure of clouds. The current topic of discussion delves more into the specifics of how data relating to DNS can be processed by an analog quantum computer in order to deal with enormous amounts of data in this specific area of research.

Ort, förlag, år, upplaga, sidor
2024. Vol. 20, nr 3, s. 344-356
Nyckelord [en]
Cloud Droplets, Direct Numeric Simulation, Quantum Computing and Machine Learning, Superposition and Entanglement, Vorticity
Nationell ämneskategori
Meteorologi och atmosfärsvetenskap Datavetenskap (datalogi)
Identifikatorer
URN: urn:nbn:se:su:diva-236597DOI: 10.3844/jcssp.2024.344.356Scopus ID: 2-s2.0-85185486513OAI: oai:DiVA.org:su-236597DiVA, id: diva2:1917440
Tillgänglig från: 2024-12-02 Skapad: 2024-12-02 Senast uppdaterad: 2025-02-01Bibliografiskt granskad

Open Access i DiVA

Fulltext saknas i DiVA

Övriga länkar

Förlagets fulltextScopus

Person

Ranjan, Rahul

Sök vidare i DiVA

Av författaren/redaktören
Ranjan, Rahul
Av organisationen
Institutionen för miljövetenskap
I samma tidskrift
Journal of Computer Science
Meteorologi och atmosfärsvetenskapDatavetenskap (datalogi)

Sök vidare utanför DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetricpoäng

doi
urn-nbn
Totalt: 100 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf