A coring (A,C) consists of an algebra A in a symmetric monoidal category and a coalgebra C in the monoidal category of A-bimodules. Corings and their comodules arise naturally in the study of Hopf-Galois extensions and descent theory, as well as in the study of Hopf algebroids. In this paper, we address the question of when two corings (A,C) and (B,D) in a symmetric monoidal model category V are homotopically Morita equivalent, i.e., when their respective categories of comodules V (C)(A) and V (D)(B) are Quillen equivalent. As an illustration of the general theory, we examine homotopical Morita theory for corings in the category of chain complexes over a commutative ring.