Endre søk
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cooking up model structures on ind- and pro-categories
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
2021 (engelsk)Licentiatavhandling, med artikler (Annet vitenskapelig)
Abstract [en]

This licentiate thesis consists of three papers related to model structures on ind- and pro-categories.

In Paper I a general method for constructing simplicial model structures on ind- and pro-categories is described. This method is particularly useful for constructing ``profinite'' analogues of known model categories. The construction quickly recovers Morel's model structure for pro-p spaces and Quick's model structure for profinite spaces, but it can also be applied to construct many interesting new model structures. In addition, some general properties of this method are studied, such as its functorial behaviour and its relation to Bousfield localization. The construction is compared to the ∞-categorical approach to ind- and pro-categories in an appendix.

In Paper II, it is shown that a profinite completion functor for (simplicial or topological) operads with good homotopical properties can be constructed as a left Quillen functor from an appropriate model category of ∞-operads to a certain model category of profinite ∞-operads. The method for constructing this model category of profinite ∞-operads and the profinite completion functor is similar to the method described in Paper I, but there are a few subtle differences that make this construction more involved. In understanding the model structure for profinite ∞-operads, an important role is played by the so-called lean ∞-operads. It is shown that these lean ∞-operads can, up to homotopy, be characterized by certain homotopical finiteness properties. Several variants of the construction are also discussed, such as the cases of unital (or closed) ∞-operads and of ∞-categories.

In Paper III, the general method from Paper I is used to give an alternative proof of a result by Arone, Barnea and Schlank. This result states that the stabilization of the category of noncommutative CW-complexes can be modelled as the category of spectral presheaves on a certain category M. The advantage of this alternative proof is that it mainly relies on well-known results on (stable) model categories.

sted, utgiver, år, opplag, sider
Stockholm: Stockholm University, 2021.
HSV kategori
Forskningsprogram
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-197660ISBN: 978-91-7797-992-0 (tryckt)OAI: oai:DiVA.org:su-197660DiVA, id: diva2:1602712
Presentation
2021-11-10, 16:00 (engelsk)
Opponent
Veileder
Tilgjengelig fra: 2021-10-13 Laget: 2021-10-13 Sist oppdatert: 2022-02-25bibliografisk kontrollert
Delarbeid
1. Simplicial model structures on pro-categories
Åpne denne publikasjonen i ny fane eller vindu >>Simplicial model structures on pro-categories
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

We describe a method for constructing simplicial model structures on ind- and pro-categories. Our method is particularly useful for constructing "profinite" analogues of known model categories. Our construction quickly recovers Morel's model structure for pro-p spaces and Quick's model structure for profinite spaces, but we will show that it can also be applied to construct many interesting new model structures. In addition, we study some general properties of our method, such as its functorial behaviour and its relation to Bousfield localization. We compare our construction to the ∞-categorical approach to ind- and pro-categories in an appendix.

HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:su:diva-197652 (URN)
Tilgjengelig fra: 2021-10-12 Laget: 2021-10-12 Sist oppdatert: 2023-03-12bibliografisk kontrollert
2. Profinite ∞-operads
Åpne denne publikasjonen i ny fane eller vindu >>Profinite ∞-operads
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

We show that a profinite completion functor for (simplicial or topological) operads with good homotopical properties can be constructed as a left Quillen functor from an appropriate model category of ∞-operads to a certain model category of profinite ∞-operads. The construction is based on a notion of lean ∞-operad, and we characterize those ∞-operads weakly equivalent to lean ones in terms of homotopical finiteness properties. Several variants of the construction are also discussed, such as the cases of unital (or closed) ∞-operads and of ∞-categories.

HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:su:diva-197658 (URN)
Tilgjengelig fra: 2021-10-12 Laget: 2021-10-12 Sist oppdatert: 2022-02-25bibliografisk kontrollert
3. A note on noncommutative CW-spectra
Åpne denne publikasjonen i ny fane eller vindu >>A note on noncommutative CW-spectra
(engelsk)Manuskript (preprint) (Annet vitenskapelig)
Abstract [en]

We use the machinery of Paper I to give an alternative proof of one of the main results of [ABS21]. This result states that the category of noncommutative CW-spectra can be modelled as the category of spectral presheaves on a certain category M, whose objects can be thought of as “suspension spectra of matrix algebras”. The advantage of our proof is that it mainly relies on well-known results on (stable) model categories.

HSV kategori
Forskningsprogram
matematik
Identifikatorer
urn:nbn:se:su:diva-197659 (URN)
Tilgjengelig fra: 2021-10-12 Laget: 2021-10-12 Sist oppdatert: 2023-03-12bibliografisk kontrollert

Open Access i DiVA

fulltext(275 kB)353 nedlastinger
Filinformasjon
Fil FULLTEXT01.pdfFilstørrelse 275 kBChecksum SHA-512
bd5e0fc8d6aa2f51c8b3e80779d684a9d34b074d78862ee49e41244612fec36069ff6f8282a6616e2f5b5ed062995ff57487d2df76a3aa2840c26c9efed48d48
Type fulltextMimetype application/pdf

Person

Blom, Thomas

Søk i DiVA

Av forfatter/redaktør
Blom, Thomas
Av organisasjonen

Søk utenfor DiVA

GoogleGoogle Scholar
Totalt: 353 nedlastinger
Antall nedlastinger er summen av alle nedlastinger av alle fulltekster. Det kan for eksempel være tidligere versjoner som er ikke lenger tilgjengelige

isbn
urn-nbn

Altmetric

isbn
urn-nbn
Totalt: 305 treff
RefereraExporteraLink to record
Permanent link

Direct link
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annet format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annet språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf