Ändra sökning
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf
Cooking up model structures on ind- and pro-categories
Stockholms universitet, Naturvetenskapliga fakulteten, Matematiska institutionen.
2021 (Engelska)Licentiatavhandling, sammanläggning (Övrigt vetenskapligt)
Abstract [en]

This licentiate thesis consists of three papers related to model structures on ind- and pro-categories.

In Paper I a general method for constructing simplicial model structures on ind- and pro-categories is described. This method is particularly useful for constructing ``profinite'' analogues of known model categories. The construction quickly recovers Morel's model structure for pro-p spaces and Quick's model structure for profinite spaces, but it can also be applied to construct many interesting new model structures. In addition, some general properties of this method are studied, such as its functorial behaviour and its relation to Bousfield localization. The construction is compared to the ∞-categorical approach to ind- and pro-categories in an appendix.

In Paper II, it is shown that a profinite completion functor for (simplicial or topological) operads with good homotopical properties can be constructed as a left Quillen functor from an appropriate model category of ∞-operads to a certain model category of profinite ∞-operads. The method for constructing this model category of profinite ∞-operads and the profinite completion functor is similar to the method described in Paper I, but there are a few subtle differences that make this construction more involved. In understanding the model structure for profinite ∞-operads, an important role is played by the so-called lean ∞-operads. It is shown that these lean ∞-operads can, up to homotopy, be characterized by certain homotopical finiteness properties. Several variants of the construction are also discussed, such as the cases of unital (or closed) ∞-operads and of ∞-categories.

In Paper III, the general method from Paper I is used to give an alternative proof of a result by Arone, Barnea and Schlank. This result states that the stabilization of the category of noncommutative CW-complexes can be modelled as the category of spectral presheaves on a certain category M. The advantage of this alternative proof is that it mainly relies on well-known results on (stable) model categories.

Ort, förlag, år, upplaga, sidor
Stockholm: Stockholm University, 2021.
Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
URN: urn:nbn:se:su:diva-197660ISBN: 978-91-7797-992-0 (tryckt)OAI: oai:DiVA.org:su-197660DiVA, id: diva2:1602712
Presentation
2021-11-10, 16:00 (Engelska)
Opponent
Handledare
Tillgänglig från: 2021-10-13 Skapad: 2021-10-13 Senast uppdaterad: 2022-02-25Bibliografiskt granskad
Delarbeten
1. Simplicial model structures on pro-categories
Öppna denna publikation i ny flik eller fönster >>Simplicial model structures on pro-categories
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We describe a method for constructing simplicial model structures on ind- and pro-categories. Our method is particularly useful for constructing "profinite" analogues of known model categories. Our construction quickly recovers Morel's model structure for pro-p spaces and Quick's model structure for profinite spaces, but we will show that it can also be applied to construct many interesting new model structures. In addition, we study some general properties of our method, such as its functorial behaviour and its relation to Bousfield localization. We compare our construction to the ∞-categorical approach to ind- and pro-categories in an appendix.

Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:su:diva-197652 (URN)
Tillgänglig från: 2021-10-12 Skapad: 2021-10-12 Senast uppdaterad: 2023-03-12Bibliografiskt granskad
2. Profinite ∞-operads
Öppna denna publikation i ny flik eller fönster >>Profinite ∞-operads
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We show that a profinite completion functor for (simplicial or topological) operads with good homotopical properties can be constructed as a left Quillen functor from an appropriate model category of ∞-operads to a certain model category of profinite ∞-operads. The construction is based on a notion of lean ∞-operad, and we characterize those ∞-operads weakly equivalent to lean ones in terms of homotopical finiteness properties. Several variants of the construction are also discussed, such as the cases of unital (or closed) ∞-operads and of ∞-categories.

Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:su:diva-197658 (URN)
Tillgänglig från: 2021-10-12 Skapad: 2021-10-12 Senast uppdaterad: 2022-02-25Bibliografiskt granskad
3. A note on noncommutative CW-spectra
Öppna denna publikation i ny flik eller fönster >>A note on noncommutative CW-spectra
(Engelska)Manuskript (preprint) (Övrigt vetenskapligt)
Abstract [en]

We use the machinery of Paper I to give an alternative proof of one of the main results of [ABS21]. This result states that the category of noncommutative CW-spectra can be modelled as the category of spectral presheaves on a certain category M, whose objects can be thought of as “suspension spectra of matrix algebras”. The advantage of our proof is that it mainly relies on well-known results on (stable) model categories.

Nationell ämneskategori
Matematik
Forskningsämne
matematik
Identifikatorer
urn:nbn:se:su:diva-197659 (URN)
Tillgänglig från: 2021-10-12 Skapad: 2021-10-12 Senast uppdaterad: 2023-03-12Bibliografiskt granskad

Open Access i DiVA

fulltext(275 kB)353 nedladdningar
Filinformation
Filnamn FULLTEXT01.pdfFilstorlek 275 kBChecksumma SHA-512
bd5e0fc8d6aa2f51c8b3e80779d684a9d34b074d78862ee49e41244612fec36069ff6f8282a6616e2f5b5ed062995ff57487d2df76a3aa2840c26c9efed48d48
Typ fulltextMimetyp application/pdf

Person

Blom, Thomas

Sök vidare i DiVA

Av författaren/redaktören
Blom, Thomas
Av organisationen
Matematiska institutionen
Matematik

Sök vidare utanför DiVA

GoogleGoogle Scholar
Totalt: 353 nedladdningar
Antalet nedladdningar är summan av nedladdningar för alla fulltexter. Det kan inkludera t.ex tidigare versioner som nu inte längre är tillgängliga.

isbn
urn-nbn

Altmetricpoäng

isbn
urn-nbn
Totalt: 305 träffar
RefereraExporteraLänk till posten
Permanent länk

Direktlänk
Referera
Referensformat
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Annat format
Fler format
Språk
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Annat språk
Fler språk
Utmatningsformat
  • html
  • text
  • asciidoc
  • rtf