Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
3D printing of Green Water Purification Filters: Design towards Sustainable and Scalable Biocomposite Materials
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK). Wallenberg Wood Science Center (WWSC).ORCID iD: 0000-0001-5193-7061
2023 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

The globally escalating water pollution and water scarcity necessitates the development of efficient and sustainable water treatment technologies. This thesis investigates the feasibility of utilizing renewable and waste materials in the form of green composites for the fabrication of water purification filters via Fused Deposition Modelling (FDM).

The first system studied within this thesis is based on the biobased thermoplastic polymer - polylactic acid (PLA), which serves as a composite matrix that is reinforced and functionalized with an array of green materials including fish-scale extracted hydroxyapatite (HAp), 2,2,6,6 – tetramethylpiperdine-1-oxyl (TEMPO) - oxidized cellulose nanofibers (TCNF), chitin nanofibers (ChNF), and bioinspired metal-organic framework – SU-101. All the developed PLA-based biocomposites exhibited great design flexibility and excellent printability, leading to the development of high surface-finish quality water purification filters of various geometries and porosity architectures. The developed filters successfully removed various contaminants from water. High capability for removal of metal ions from both, model solutions (reaching removal capacity towards Cu2+ ions of 208 mg/gNF and 234 mg/gNF for ChNF/PLA and TCNF/PLA filters, respectively, compared to only 4 mg/g for PLA filters), as well as from an actual mine effluent, reaching removal efficiency towards i.a. Mn2+ ions of over 50 % was demonstrated. Moreover, the developed TCNF/PLA and ChNF/PLA filters successfully removed microplastics from laundry effluent with over 70 % separation efficiency. The PLA-based biocomposite filters surface-functionalized with SU-101 were also suitable for the removal of cationic dye, methylene blue (MB), from water with removal efficiencies of over 40 %.

The second composite system explored the possibility of using post-consumer polycotton textile waste as a functional entity for the polyethylene terephthalate glycol (PETG) matrix, for the fabrication of 3D printing filaments, which can be further processed into highly functional water purification filters by the FDM. The conducted TEMPO-mediated oxidation of the polycotton garments introduced negatively charged carboxylic groups onto the 3D printing filament’s surface and consequently, onto the 3D printed structures, yielding filters suitable for removal of cationic dyes, such as MB, from water.

Apart from being evaluated for their ability to remove various contaminants from water, the filters have been subjected to a series of tests to assess the homogeneity of the filler dispersion in the polymer matrix as well as the filters’ permeability and mechanical stability. The high throughput character of the filters was demonstrated, as e.g., for the HAp/PLA filters the calculated flux reached 2x106 Lm-2h-1bar-1. The reinforcing impact of the nanospecies on the polymer matrix in the gradient porosity filters was investigated and so, it was shown that the addition of ChNF and TCNF fibers into PLA increases their Young’s modulus value from 550.7 ± 2.8 MPa, to 622.7 ± 1.6 MPa and 702.9 ± 5.4 MPa, respectively. Moreover, the lifespan of the filters was assessed by subjecting them to an accelerated ageing procedure in water, which have shown that the TCNF/PLA and ChNF/PLA filters could serve up to eight and five months, respectively, while maintaining their functionality and good mechanical performance. Furthermore, the study revealed that the filters are indeed biodegradable, as after prolonged exposure to water at elevated temperatures, they have fully disintegrated.

Overall, the obtained results demonstrate the feasibility of combining renewable and recycled materials with 3D printing technology to create water purification filters suitable for the removal of a wide variety of contaminants from water.

Abstract [sv]

De globalt eskalerande vattenföroreningarna och vattenbristen kräver utveckling av effektiva och hållbara vattenreningsteknologier. Denna avhandling undersöker genomförbarheten att använda förnybara och/eller återvunna avfallsmaterial i form av kompositer för tillverkning av vattenreningsfilter via Fused Deposition Modelling (FDM).

Det första systemet bygger på den biobaserade termoplastiska polymeren – polylaktid (PLA), som fungerar som en kompositmatris vilken förstärkts och funktionaliserats med olika gröna material, inklusive fiskfjälls-extraherad hydroxyapatit (HAp), 2,2,6,6 - tetrametyliperidin-1-oxyl (TEMPO)-oxiderade cellulosa-nanofibrer (TCNF), kitin-nanofibrer (ChNF) och det bioinspirerade metallbelagda organiska ramverket - SU-101. Samtliga framställda PLA-baserade biokompositer visade stor designflexibilitet och utmärkt utskriftsbarhet, vilket ledde till utvecklingen av vattenreningsfilter med hög ytjämnhet och olika geometrier och porositetsstrukturer. De utvecklade filtren avlägsnade framgångsrikt olika föroreningar från vatten. En hög förmåga att avlägsna metalljoner från modellösningar (uppnådde borttagningskapacitet av t.ex. Cu2+ joner på 208 mg/gNF och 234 mg/gNF för ChNF/PLA och TCNF/PLA-filter, jämfört med 4 mg/g för PLA-filter), samt från ett verkligt gruvavloppsflöde, där borttagningskapaciteten av t.ex. Mn2+ var över 50 %, demonstrerades. Dessutom avlägsnade TCNF/PLA- och ChNF/PLA-filtren framgångsrikt mikroplaster från tvättvatten med över 70 % separationskapacitet. De biokomposita filtren som ytfunktionaliserats med SU-101 var även lämpliga för att avlägsna ett katjoniskt färgämne, metylenblå (MB), från vatten med en borttagningskapacitet på över 40 %.

Det andra kompositsystemet undersökte möjligheten att använda återvunnet textilavfall från konsumenter som en funktionell enhet för polyetentereftalatglykol (PETG)-matrisen, för tillverkning av 3D-filament, som sedan kan användas för att producera högfungerande vattenreningsfilter genom FDM. Genomförd TEMPO-oxidation av återvunnet polycotton-klädesplagg ledde till introduktionen av negativt laddade kemiska grupper på 3D-filamentets yta och därigenom på de 3D-utskrivna strukturerna, vilket resulterar i filter som är lämpliga för avlägsnande av katjoniska färgämnen, som MB, från vatten.

Utöver att utvärderas för sin förmåga att avlägsna olika föroreningar från vatten, har filtren genomgått en serie tester för att bedöma bland annat homogeniteten i fyllmedlets dispersion i polymermatrisen samt filtrens permeabilitet och mekaniska stabilitet. Filtrens höga genomströmningsegenskaper demonstrerades, t.ex. för HAp/PLA-filtret nådde den beräknade flödeshastigheten 2x106 Lm-2h-1bar-1. Förstärkande egenskaper hos nanospecier i gradientporositetsfilter på polymermatrisen undersöktes och det visades att tillsats av ChNF- och TCNF-fibrer till PLA ökar dess Young's modul-värde från 550.7 ± 2.8 MPa till 622.7 ± 1.6 MPa respektive 702.9 ± 5.4 MPa. Dessutom utvärderades filtrens livslängd genom att utsättas för en accelererad åldrandeprocess i vatten, vilket ledde till slutsatsen att filtren kan fungera i upp till åtta månader och behålla sin funktionalitet och goda mekaniska prestanda. Vidare visade studien att filtren faktiskt är biologiskt nedbrytbara, eftersom de efter långvarig exponering i vatten vid förhöjd temperatur helt brutits ner.

Sammanfattningsvis visar de erhållna resultaten att det är genomförbart att kombinera förnybara och återvunna material med 3D-utskriftsteknik för att skapa vattenreningsfilter lämpliga för att avlägsna olika föroreningar från vatten. Ytterligare forskning krävs för att optimera kompositsystemets design, så att det inkorporerar ett större antal funktionskomponenter och därmed förbättrar dess totala prestanda och effektivitet.

Abstract [pl]

Eskalujący problem globalnego zanieczyszczenia wód wymaga opracowania nowoczesnych i skutecznych technologii oczyszczania wody działających w ramach zrównoważonego rozwoju. W kontekście niniejszej rozprawy doktorskiej przeprowadzono badania mające na celu wykorzystanie odnawialnych biomateriałów, a także poddanych recyklingowi materiałów odpadowych, do produkcji filtrów do oczyszczania wody za pomocą technologii druku trójwymiarowego (3D), konkretnie metody Osadzania Topionego Materiału (ang. Fused Deposition Modelling (FDM)).

W badaniach skoncentrowano się na dwóch różnych systemach kompozytowych. Pierwszy system opierał się na biodegradowalnym polimerze termoplastycznym - kwasie polilaktydowym (PLA), który pełnił rolę lepiszcza kompozytu. Lepiszcze było następnie wzmacniane i funkcjonalizowane przy użyciu materiałów pochodzenia naturalnego tj. hydroksyapatytem (HAp) ekstraktowanym z rybich łusek, nanowłóknami celulozy (CNF) utlenionej 2,2,6,6-tetrametylo-1-oksopiperydyną (TEMPO) - TCNF, nanowłóknami chitynowymi (ChNF) oraz zielonym szkieletem metalo-organicznym bazującym na kwasie elagowym (SU-101). Wszystkie otrzymane biokompozyty oparte na PLA charakteryzowały się dużą elastycznością w zakresie projektowania i doskonałą zdolnością do przetwarzania przy użyciu komercyjnych drukarek 3D, co pozwoliło na stworzenie filtrów o wysokiej jakości wykończenia, a także o różnych geometriach i architekturach porowatości. Opracowane materiały skutecznie usuwały różne substancje zanieczyszczające z wody. Filtry wykazały wysoką zdolność do usuwania jonów metali zarówno w warunkach laboratoryjnych, z roztworów modelowych (uzyskując m.in. zdolność usuwania jonów Cu2+ na poziomie 208 mg/gnanowłókna(NW) i 234 mg/gNW dla filtrów ChNF/PLA i TCNF/PLA, w porównaniu do 4 mg/g dla filtrów wykonanych z czystego PLA), jak i z rzeczywistych zrzutów kopalnianych, osiągając skuteczność usuwania jonów Mn2+ powyżej 50 %. Ponadto, opracowane filtry TCNF/PLA i ChNF/PLA wykazywały potencjał do separacji mikroplastików z odpływu z prania z efektywnością separacji powyżej 70 %. Natomiast zrecyklingowane filtry biokompozytowe powierzchniowo funkcjonalizowane SU-101 wykazały się również zdolnością do usuwania barwnika kationowego, błękitu metylenowego (MB), z wody z wydajnością usuwania powyżej 40 %.

Drugi badany system kompozytowy koncentrował się na wykorzystaniu zużytych tekstyliów bawełniano-poliestrowych jako komponentu konstrukcyjnego dla lepiszcza glikolu polietylenotereftalanowego (PETG) do produkcji termoplastycznych filamentów do druku 3D. Otrzymane filamenty zostały przetworzone w wysoko funkcjonalne filtry do oczyszczania wody przy użyciu technologii FDM. TEMPO - oksydacja tekstyliów przeprowadzona przed przetwarzaniem materiału, zarówno w wytłaczarce jednoślimakowej, jak i drukarce 3D, umożliwiła wprowadzenie na powierzchnię filamentu, a ostatecznie także filtrów, grup chemicznych o ładunku ujemnym. Otrzymane filtry były więc odpowiednio zaprojektowane do usuwania jonowych substancji z ładunkiem dodatnim, takich jak np. MB, z wody.

Oprócz oceny zdolności filtrów do usuwania różnych substancji zanieczyszczających z wody, przeprowadzono również szereg testów mających na celu ocenę m.in. jednorodności rozproszenia nanokomponentów w lepiszczu polimerowym, przepuszczalności, a także stabilności termo-mechanicznej filtrów. Wykazano na przykład, że przepływ wody dla filtrów wykonanych z kompozytu HAp/PLA wynosił 2x106 Lm-2h-1bar-1. Badano również wpływ nanocząstek wzmacniających na lepiszcze polimerowe i wykazano, że dodatek włókien chityny i celulozy do PLA zwiększał odpowiednio moduł Younga wydrukowanych porowatych filtrów z 550.7 ± 2.8 MPa do 622.7 ± 1.6 MPa i 702.9 ± 5.4 Mpa. Ponadto, oceniono okres użytkowania filtrów poprzez przyspieszone procesy starzenia w wodzie, które potwierdziły, że filtry mogą służyć przez okres do ośmiu miesięcy, zachowując swoją funkcjonalność i właściwości mechaniczne.

Podsumowując, prezentowany zbiór publikacji stanowiący rozprawę doktorską dowodzi możliwości wykorzystania odnawialnych i zrecyklingowanych materiałów i technologii druku 3D w celu stworzenia filtrów do oczyszczania wody, zdolnych do usuwania szerokiej gamy substancji zanieczyszczających. Dalsze badania, służące optymalizacji składu chemicznego badanych kompozytów, są wskazane. Ponadto, należy przeprowadzić środowiskową ocenę cyklu życia wykonanych filtrów, tak aby kontynuować postęp w dziedzinie oczyszczania wody w ramach idei zrównoważonego  rozwoju.

Place, publisher, year, edition, pages
Stockholm: Department of Materials and Environmental Chemistry, Stockholm University , 2023. , p. 66
Keywords [en]
3D printing, water treatment, polylactic acid, nanocellulose, nanochitin, hydroxyapatite, green metal-organic frameworks
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-219886ISBN: 978-91-8014-416-2 (print)ISBN: 978-91-8014-417-9 (electronic)OAI: oai:DiVA.org:su-219886DiVA, id: diva2:1786270
Public defence
2023-09-22, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16 B, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2023-08-30 Created: 2023-08-08 Last updated: 2023-08-23Bibliographically approved
List of papers
1. 3D-printed monolithic biofilters based on a polylactic acid (PLA) - hydroxyapatite (HAp) composite for heavy metal removal from an aqueous medium
Open this publication in new window or tab >>3D-printed monolithic biofilters based on a polylactic acid (PLA) - hydroxyapatite (HAp) composite for heavy metal removal from an aqueous medium
Show others...
2021 (English)In: RSC Advances, E-ISSN 2046-2069, Vol. 11, no 51, p. 32408-32418Article in journal (Refereed) Published
Abstract [en]

High flux, monolithic water purification filters based on polylactic acid (PLA) functionalised with fish scale extracted hydroxyapatite (HAp) were prepared by solvent-assisted blending and thermally induced phase separation (TIPS), followed by twin-screw extrusion into filaments and processed via three-dimensional (3D) printing. The printed filters with consistent pore geometry and channel interconnectivity as well as homogenous distribution of HAp in the PLA matrix showed adsorption capabilities towards heavy metals i.e. cadmium (Cd) and lead (Pb) with maximum adsorption capacity of 112.1 mg gHAp−1 and 360.5 mg gHAp−1 for the metal salt of Pb and Cd, respectively. The adsorption was found to be driven by a combination of ion exchange, dissolution and precipitation on HAp and surface complexation.

National Category
Chemical Sciences
Identifiers
urn:nbn:se:su:diva-199858 (URN)10.1039/d1ra05202k (DOI)000716073800001 ()
Available from: 2022-01-10 Created: 2022-01-10 Last updated: 2023-08-08Bibliographically approved
2. 3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water
Open this publication in new window or tab >>3D printed polylactic acid (PLA) filters reinforced with polysaccharide nanofibers for metal ions capture and microplastics separation from water
Show others...
2023 (English)In: Chemical Engineering Journal, ISSN 1385-8947, E-ISSN 1873-3212, Vol. 457, article id 141153Article in journal (Refereed) Published
Abstract [en]

The need for multifunctional, robust, reusable, and high-flux filters is a constant challenge for sustainable water treatment. In this work, fully biobased and biodegradable water purification filters were developed and processed by the means of three-dimensional (3D) printing, more specifically by fused deposition modelling (FDM).

The polylactic acid (PLA) – based composites reinforced with homogenously dispersed TEMPO-oxidized cellulose nanofibers (TCNF) or chitin nanofibers (ChNF) were prepared within a four-step process; i. melt blending, ii. thermally induced phase separation (TIPS) pelletization method, iii. freeze drying and iv. single-screw extrusion to 3D printing filaments. The monolithic, biocomposite filters were 3D printed in cylindrical as well as hourglass geometries with varying, multiscale pore architectures. The filters were designed to control the contact time between filter’s active surfaces and contaminants, tailoring their permeance.

All printed filters exhibited high print quality and high water throughput as well as enhanced mechanical properties, compared to pristine PLA filters. The improved toughness values of the biocomposite filters clearly indicate the reinforcing effect of the homogenously dispersed nanofibers (NFs). The homogenous dispersion is attributed to the TIPS method. The NFs effect is also reflected in the adsorption capacity of the filters towards copper ions, which was shown to be as high as 234 and 208 mg/gNF for TCNF and ChNF reinforced filters, respectively, compared to just 4 mg/g for the pure PLA filters. Moreover, the biocomposite-based filters showed higher potential for removal of microplastics from laundry effluent water when compared to pure PLA filters with maximum separation efficiency of 54 % and 35 % for TCNF/PLA and ChNF/PLA filters, respectively compared to 26 % for pure PLA filters, all that while maintaining their high permeance.

The combination of environmentally friendly materials with a cost and time-effective technology such as FDM allows the development of customized water filtration systems, which can be easily adapted in the areas most affected by the inaccessibility of clean water.

Keywords
Metal ion removal, Microplastics removal, 3D printing, Polylactic acid, Nanocellulose, Nanochitin
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-219215 (URN)10.1016/j.cej.2022.141153 (DOI)001032235500001 ()2-s2.0-85145338384 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation
Available from: 2023-07-17 Created: 2023-07-17 Last updated: 2023-12-18Bibliographically approved
3. MOF@Cell: 3D printed biobased filters anchored with a green metal–organic framework for effluent treatment
Open this publication in new window or tab >>MOF@Cell: 3D printed biobased filters anchored with a green metal–organic framework for effluent treatment
Show others...
2023 (English)In: Journal of Materials Chemistry A, ISSN 2050-7488, E-ISSN 2050-7496, Vol. 11, no 23, p. 12384-12394Article in journal (Refereed) Published
Abstract [en]

Multifunctional, biobased materials processed by means of additive manufacturing technology can behighly applicable within the water treatment industry. This work summarizes a scalable and sustainablemethod of anchoring a green metal–organic framework (MOF) SU-101 onto the surface of 3D printed,biobased matrices built of polylactic acid (PLA)-based composites reinforced with TEMPO-oxidizedcellulose nanofibers (TCNFs). The two tested anchoring methods were hydrolysis via either concentratedhydrochloric acid treatment or via a photooxidation reaction using UV–ozone treatment. Stabledeposition of SU-101 distributed homogenously over the filter surface was achieved and confirmed byFT-IR, XPS and SEM measurements. The obtained 3D printed and functionalized MOF@PLA andMOF@TCNF/PLA (aka MOF@Cell) filters exhibit high efficiency in removing heavy metal ions from mineeffluent and methylene blue from contaminated water, as demonstrated through batch adsorptionexperiments. In addition to their potential for removal of contaminants from water, the MOF@Cell filtersalso exhibit excellent mechanical properties with a Young's modulus value of about 1200 MPa,demonstrating their potential for use in practical water treatment applications. The MOF@Cell filterswere able to maintain their structural integrity and filtration performance even after multiple cycles ofuse and regeneration. This study highlights the potential of multifunctional, biobased materials processedby additive manufacturing technology as a cost-effective alternative to traditional water treatmentmethods. The MOF@Cell filters presented in this study demonstrate high efficiency, durability, andreusability, making them promising candidates for practical applications in the modern water treatmentindustry.

Keywords
Metal ion removal, dye removal, 3D printing, polylactic acid, nanocellulose, metal-organic framework
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-219217 (URN)10.1039/d3ta01757e (DOI)000999466800001 ()2-s2.0-85164153001 (Scopus ID)
Funder
Knut and Alice Wallenberg Foundation, Wallenberg Wood Science CentreSwedish Foundation for Strategic Research
Available from: 2023-07-17 Created: 2023-07-17 Last updated: 2023-12-18Bibliographically approved
4. Accelerated ageing of 3D printed water purification filters based on PLA reinforced with green nanofibers
Open this publication in new window or tab >>Accelerated ageing of 3D printed water purification filters based on PLA reinforced with green nanofibers
(English)Manuscript (preprint) (Other academic)
Abstract [en]

This study investigates the ageing behavior of polylactic acid (PLA) and PLA-based biocomposites reinforced with either 2,2,6,6-tetramethylpiperidine 1-oxyl radical (TEMPO) - oxidized cellulose nanofibers (TCNF) or chitin nanofibers (ChNF) in water. Cuboid water filters, which were processed by the means of fused deposition modelling (FMD), were subjected to ageing tests in water at varying temperatures for 19 weeks. Thermomechanical results show that while the addition of TCNF and ChNF improves the mechanical performance of PLA-based filters in dry conditions, it has the opposite effect after exposure to water. Impact of the prolonged exposure to water on the Young’s modulus (YM) and toughness values on the aged biocomposite specimens was more significant than that on the unmodified PLA filters. Moreover, a significant drop in the glass transition temperature (Tg) of approximately 10 ℃ was observed for both, TCNF/PLA and ChNF filters, after just 3 weeks of ageing. In comparison, the Tg of the pure PLA remains unaffected for up to 7 weeks. 

The mechanical tests allowed to estimate the service life of the 3D printed filters using the Arrhenius model. It was shown that the TCNF/PLA and ChNF/PLA filters can be utilized at room temperature water for up to 8 and 5 months, respectively, until they lose 50 % of their initial ability to resist deformation. In the same conditions, PLA filters can serve for up to 3.5 years. In conclusion, this study highlights the importance of considering the degradation behaviour of biocomposites when developing sustainable materials for water treatment applications.

Keywords
polylactic acid, biocomposites, ageing, nanocellulose, nanochitin
National Category
Polymer Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-219881 (URN)
Available from: 2023-08-07 Created: 2023-08-07 Last updated: 2023-08-08
5. Trash to treasure: 3D printing of waste-based polycotton composite for the production of water filters and commodity products
Open this publication in new window or tab >>Trash to treasure: 3D printing of waste-based polycotton composite for the production of water filters and commodity products
Show others...
(English)Manuscript (preprint) (Other academic)
Abstract [en]

The recycling of polycotton without separating its constituents for high-performance applications has not yet been fully investigated. In this study, we propose a simple and efficient method involving one-pot, 2, 2, 6, 6 – tetramethylpiperdine-1-oxyl (TEMPO) - oxidation of post-consumer polycotton textile waste followed by lenient mechanical fibrillation. Successful chemical modification of the polycotton waste was confirmed by the Fourier-transform infrared (FT-IR) spectroscopy measurements, in which the presence of carboxyl groups introduced during the TEMPO-oxidation was observed. Moreover, the waste-based pellets were single-screw extruded into 3D printing filaments, which were further processed via desktop Fused Deposition Modelling (FDM) 3D printer.

FDM processing was carried out without hindrance. The textile-based filament was used for the fabrication of a variety of high surface-finish quality models, which presented diverse geometries and porosity architectures. The versatility of the developed 3D printed models was demonstrated through both, their potential to be utilized as fashion accessories, and by evaluating their performance in water treatment applications. Taking advantage of the introduction of negatively charged carboxylic groups onto the polycotton-based materials, which was expected to facilitate the electrostatic interactions with positively charged species, the 3D printed filters were tested for removal of cationic dye methylene blue (MB) from water in a batch adsorption study. The adsorption followed Langmuir model, with a maximim adsorption capacity of 3 µmol/g. 

Overall, this work presents a novel approach for the upcycling of polycotton waste into functional filament suitable for a variety of 3D printing, and further, engineering applications. The development of composite filaments and their mechanical and adsorption properties pave the way for future research within valorisation of textile-based waste.

Keywords
textile waste, polycotton, chemical modification, water treatment applications
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-219882 (URN)
Available from: 2023-08-07 Created: 2023-08-07 Last updated: 2023-08-08

Open Access in DiVA

3D printing of Green Water Purification Filters(3447 kB)1511 downloads
File information
File name FULLTEXT01.pdfFile size 3447 kBChecksum SHA-512
e94e3b127443581b478c726d534062b2e9c56d74c7aba8c93703431e9fab65985de1388fdbac010171e26fb5d9ce9a33c4cbd705870b9bf4b92414193979630f
Type fulltextMimetype application/pdf

Search in DiVA

By author/editor
Fijoł, Natalia
By organisation
Department of Materials and Environmental Chemistry (MMK)
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 1517 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 2032 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf