Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Massive pre-main-sequence stars in M17 First and second overtone CO bandhead emission and the thermal infrared
Show others and affiliations
Number of Authors: 72023 (English)In: Astronomy and Astrophysics, ISSN 0004-6361, E-ISSN 1432-0746, Vol. 676, article id A122Article in journal (Refereed) Published
Abstract [en]

Context. Recently much progress has been made in probing the embedded stages of massive star formation, pointing to formation scenarios that are reminiscent of a scaled-up version of low-mass star formation. However, the latest stages of massive-star formation have rarely been observed, as young massive stars are assumed to reveal their photospheres only when they are fully formed.

Aims. Using first and second overtone CO bandhead emission and near- to mid-infrared photometry, we aim to characterize the remnant formation disks around five unique pre-main-sequence (PMS) stars with masses 6–12 M that have constrained stellar parameters thanks to their detectable photospheres. We seek to understand this emission and the disks from which it originates in the context of the evolutionary stage of the studied sources.

Methods. We used an analytic disk model, and adopted local thermodynamical equilibrium, to fit the CO bandhead and the dust emission, assumed to originate in different disk regions. For the first time, we modeled the second overtone emission, which helped us to put tighter constraints on the density of the CO gas. Furthermore, we fit continuum normalized bandheads, using models for stellar and dust continuum, and show the importance of this in constraining the emission region. We also included 13CO in our models as an additional probe of the young nature of the studied objects.

Results. We find that the CO emission originates in a narrow region close to the star (<1 AU) and under very similar disk conditions (temperatures and densities) for the different objects. This is consistent with previous modeling of this emission in a diverse range of young stellar objects and identifies CO emission as an indicator of the presence of a gaseous inner disk reaching close to the stellar surface. From constraining the location of the inner edge of the dust emission, we find that all but one of the objects have undisrupted inner dust disks.

Conclusions. We discuss these results in the context of the positions of these PMS stars in the Hertzsprung-Russel diagram and the CO emission’s association with an early age and high accretion rates in (massive) young stellar objects. We conclude, considering their mass range and the fact that their photospheres are detected, that the M17 PMS stars are observed in a relatively early formation stage. They are therefore excellent candidates for longer wavelength studies to further constrain the end stages of massive star formation.

Place, publisher, year, edition, pages
2023. Vol. 676, article id A122
Keywords [en]
circumstellar matter, stars, massive, pre-main sequence, formation
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-221070DOI: 10.1051/0004-6361/202245658ISI: 001053641600004Scopus ID: 2-s2.0-85169934889OAI: oai:DiVA.org:su-221070DiVA, id: diva2:1799861
Available from: 2023-09-25 Created: 2023-09-25 Last updated: 2023-09-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bik, Arjan

Search in DiVA

By author/editor
Bik, Arjan
By organisation
Department of AstronomyThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Astronomy and Astrophysics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 34 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf