Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Carroll stories
Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Copenhagen University, Denmark.ORCID iD: 0000-0003-4947-8526
Show others and affiliations
Number of Authors: 52023 (English)In: Journal of High Energy Physics (JHEP), ISSN 1126-6708, E-ISSN 1029-8479, no 9, article id 148Article in journal (Refereed) Published
Abstract [en]

We study various aspects of the Carroll limit in which the speed of light is sent to zero. A large part of this paper is devoted to the quantization of Carroll field theories. We show that these exhibit infinite degeneracies in the spectrum and may suffer from non-normalizable ground states. As a consequence, partition functions of Carroll systems are ill-defined and do not lead to sensible thermodynamics. These seemingly pathological properties might actually be a virtue in the context of flat space holography.

Better defined is the Carroll regime, in which we consider the leading order term in an expansion around vanishing speed of light without taking the strict Carroll limit. Such an expansion may lead to sensible notions of Carroll thermodynamics. An interesting example is a gas of massless particles with an imaginary chemical potential conjugate to the momentum. In the Carroll regime we show that the partition function of such a gas leads to an equation of state with w = −1.

As a separate story, we study aspects of Carroll gravity and couplings to Carrollian energy-momentum tensors. We discuss many examples of solutions to Carroll gravity, including wormholes, Maxwell fields, solutions with a cosmological constant, and discuss the structure of geodesics in a Carroll geometry. The coupling of matter to Carroll gravity also allows us to derive energy-momentum tensors for hypothetical Carroll fluids from expanding relativistic fluids as well as directly from hydrostatic partition functions.

Place, publisher, year, edition, pages
2023. no 9, article id 148
Keywords [en]
Space-Time Symmetries, Field Theories in Lower Dimensions, Field Theory Hydrodynamics, Black Holes
National Category
Other Physics Topics
Identifiers
URN: urn:nbn:se:su:diva-223939DOI: 10.1007/JHEP09(2023)148ISI: 001071496600003Scopus ID: 2-s2.0-85171992127OAI: oai:DiVA.org:su-223939DiVA, id: diva2:1814743
Available from: 2023-11-27 Created: 2023-11-27 Last updated: 2023-11-27Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Obers, Niels A.

Search in DiVA

By author/editor
Obers, Niels A.
By organisation
Nordic Institute for Theoretical Physics (Nordita)
In the same journal
Journal of High Energy Physics (JHEP)
Other Physics Topics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 31 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf