Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Symmetry-protected exceptional and nodal points in non-Hermitian systems
Stockholm University, Nordic Institute for Theoretical Physics (Nordita). Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0003-4326-7293
Stockholm University, Faculty of Science, Department of Physics.
2023 (English)In: SciPost Physics, E-ISSN 2542-4653, Vol. 15, no 5, article id 200Article in journal (Refereed) Published
Abstract [en]

One of the unique features of non-Hermitian (NH) systems is the appearance of NH degeneracies known as exceptional points (EPs). The extensively studied defective EPs occur when the Hamiltonian becomes non-diagonalizable. Aside from this degeneracy, we show that NH systems may host two further types of non-defective degeneracies, namely, non-defective EPs and ordinary (Hermitian) nodal points. The non-defective EPs manifest themselves by i) the diagonalizability of the NH Hamiltonian at these points and ii) the non-diagonalizability of the Hamiltonian along certain intersections of these points, resulting in instabilities in the Jordan decomposition when approaching the points from certain directions. We demonstrate that certain discrete symmetries, namely parity-time, parity-particle-hole, and pseudo-Hermitian symmetry, guarantee the occurrence of both defective and non-defective EPs. We extend this list of symmetries by including the NH time-reversal symmetry in two-band systems. Two-band and four-band models exemplify our findings. Through an example, we further reveal that ordinary nodal points may coexist with defective EPs in NH models when the above symmetries are relaxed.

Place, publisher, year, edition, pages
2023. Vol. 15, no 5, article id 200
National Category
Condensed Matter Physics
Identifiers
URN: urn:nbn:se:su:diva-224551DOI: 10.21468/scipostphys.15.5.200ISI: 001110706300002Scopus ID: 2-s2.0-85178085861OAI: oai:DiVA.org:su-224551DiVA, id: diva2:1820311
Funder
Knut and Alice Wallenberg Foundation, 2017.0157Swedish Research CouncilAvailable from: 2023-12-18 Created: 2023-12-18 Last updated: 2025-04-25Bibliographically approved
In thesis
1. Topology and non-Hermiticity
Open this publication in new window or tab >>Topology and non-Hermiticity
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Topology is a branch of mathematics that studies properties that remain unchanged under continuous deformations. In physics, topology is used to describe phenomena that are robust against small perturbations. A well-known example is topological insulators—materials that act as insulators in their interior while conducting along their surface. These conducting states are protected by topological properties and persist even when the material is slightly modified. Over the past few decades, significant effort has been devoted to understanding and classifying different types of topological phases, which describe the various ways in which such robust properties can emerge in nature.

In recent years, interest has grown in dissipative systems, where energy losses play a central role. These systems are described using non-Hermitian Hamiltonians, which extend the conventional quantum mechanical framework.

This dissertation explores how non-Hermitian physics affects the topology and classification of topological phases. In particular, we investigate a type of topological charge known as exceptional points, which arise exclusively in non-Hermitian systems. These points are characterized by a topological charge that describes how energy bands intertwine around them. We focus specifically on how certain symmetries can stabilize exceptional points and shape their properties. Finally, we examine multifold exceptional points—a more intricate class of these singularities—and their topological characteristics.

Place, publisher, year, edition, pages
Stockholm: Department of Physics, Stockholm University, 2025. p. 73
Keywords
non-Hermitian, Topology, Exceptional points, Topological phases
National Category
Condensed Matter Physics
Research subject
Theoretical Physics
Identifiers
urn:nbn:se:su:diva-242514 (URN)978-91-8107-274-7 (ISBN)978-91-8107-275-4 (ISBN)
Public defence
2025-06-12, FB52, Roslagstullsbacken 21 and online via Zoom, public link is available at the department website, Stockholm, 14:00 (English)
Opponent
Supervisors
Available from: 2025-05-20 Created: 2025-04-25 Last updated: 2025-05-15Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Stålhammar, MarcusRødland, Lukas

Search in DiVA

By author/editor
Stålhammar, MarcusRødland, Lukas
By organisation
Nordic Institute for Theoretical Physics (Nordita)Department of Physics
In the same journal
SciPost Physics
Condensed Matter Physics

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 24 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf