Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
SN 2023emq: A Flash-ionized Ibn Supernova with Possible C iii Emission
Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC). Stockholm University, Faculty of Science, Department of Physics.ORCID iD: 0000-0001-6797-1889
Show others and affiliations
Number of Authors: 192023 (English)In: Astrophysical Journal Letters, ISSN 2041-8205, E-ISSN 2041-8213, Vol. 959, no 1, article id L10Article in journal (Refereed) Published
Abstract [en]

SN 2023emq is a fast-evolving transient initially classified as a rare Type Icn supernova (SN), interacting with a H- and He-free circumstellar medium (CSM) around maximum light. Subsequent spectroscopy revealed the unambiguous emergence of narrow He lines, confidently placing SN 2023emq in the more common Type Ibn class. Photometrically, SN 2023emq has several uncommon properties regardless of its class, including its extreme initial decay (faster than >90% of Type Ibn/Icn SNe) and sharp transition in the decline rate from 0.20 to 0.07 mag day−1 at +20 days. The bolometric light curve can be modeled as CSM interaction with 0.32M of ejecta and 0.12M of CSM, with 0.006M of nickel, as expected of fast, interacting SNe. Furthermore, broadband polarimetry at +8.7 days (P = 0.55% ± 0.30%) is consistent with spherical symmetry. A discovery of a transitional Type Icn/Ibn SN would be unprecedented and would give valuable insights into the nature of mass loss suffered by the progenitor just before death, but we favor an interpretation that SN 2023emq is a Type Ibn SN that exhibited flash-ionized features in the earliest spectrum, as the features are not an exact match with other Type Icn SNe to date. However, the feature at 5700 Å, in the region of C iii and N ii emission, is significantly stronger in SN 2023emq than in the few other flash-ionized Type Ibn SNe, and if it is related to C iii, it possibly implies a continuum of properties between the two classes.

Place, publisher, year, edition, pages
2023. Vol. 959, no 1, article id L10
Keywords [en]
Supernovae
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-225389DOI: 10.3847/2041-8213/ad103dISI: 001123672400001Scopus ID: 2-s2.0-85180306580OAI: oai:DiVA.org:su-225389DiVA, id: diva2:1829259
Available from: 2024-01-18 Created: 2024-01-18 Last updated: 2024-01-18Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Schulze, Steve

Search in DiVA

By author/editor
Schulze, Steve
By organisation
The Oskar Klein Centre for Cosmo Particle Physics (OKC)Department of Physics
In the same journal
Astrophysical Journal Letters
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf