Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Adsorption of volatile organic compounds on activated carbon with included iron phosphate
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK).ORCID iD: 0000-0001-8225-9670
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Inorganic and Structural Chemistry.ORCID iD: 0000-0001-7286-1211
Stockholm University, Faculty of Science, Department of Materials and Environmental Chemistry (MMK), Materials Chemistry.ORCID iD: 0000-0002-7569-273X
Show others and affiliations
2023 (English)In: Carbon trends, ISSN 2667-0569, Vol. 11, article id 100259Article in journal (Refereed) Published
Abstract [en]

Volatile organic compounds (VOCs) are often hazardous and need commonly to be removed from gas mixtures. Capture on activated carbon (AC) is one approach to achieving this. We hypothesized that the smallest pores on ACs and the inclusion of inorganic phosphates could enhance the low gas pressure uptake of two typical VOCs (acetone and isopropanol). To test this hypothesis, ACs were prepared by chemical activation of hydrochars with H3PO4 or a mixture of FeCl3 and H3PO4. The hydrochars had been prepared by hydrothermal carbonization of glucose. The ACs were characterized by XRD, IR, TGA, and the adsorption of N2, CO2, H2O, acetone, and isopropanol. The results showed that the ACs had comparably high adsorption of acetone and isopropanol at low vapor pressures. The low-pressure uptake (at 0.03 kPa) of isopropanol and acetone had values of up to 3.4 mmol/g and 2.2 mmol/g, respectively. This suggests that ACs containing iron phosphate could be of relevance for adsorption driven removal of VOC. It was also observed that the external surface area of the ACs containing iron phosphates increased upon secondary heat treatment in N2.

Place, publisher, year, edition, pages
2023. Vol. 11, article id 100259
National Category
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-228544DOI: 10.1016/j.cartre.2023.100259ISI: 001030948100001Scopus ID: 2-s2.0-85151239392OAI: oai:DiVA.org:su-228544DiVA, id: diva2:1853281
Funder
Mistra - The Swedish Foundation for Strategic Environmental Research, 2015/31Knut and Alice Wallenberg FoundationAvailable from: 2024-04-22 Created: 2024-04-22 Last updated: 2024-04-22Bibliographically approved
In thesis
1. From blue hydrochars to activated carbons: Hydrothermal carbonization, chemical activation and gas adsorption
Open this publication in new window or tab >>From blue hydrochars to activated carbons: Hydrothermal carbonization, chemical activation and gas adsorption
2024 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Hydrothermal carbonization (HTC) of carbohydrates and biomass is a straightforward method for preparing hydrochars at low temperatures of 180-250 °C. Hydrochars are more carbonized than their precursors. Increasing the carbonization degree of hydrochars at hydrothermal temperatures is a scientific quest that is addressed in this thesis. Hydrochars are known to have a spherical or irregular morphology. Here we address thin film hydrochars for the first time.  Hydrochars themselves are carbon precursors for preparing activated carbons. Activated carbons are porous materials that can be used for gas adsorption applications. In this thesis, enhanced adsorption of VOCs at low pressures is addressed by using iron phosphate impregnated activated carbons. Finaly, any chemical process or product including those in this thesis such as HTC, activation, hydrochar and activated carbons may contribute to the issue of environmental degradation positively or negatively. Such environmental impacts are addressed by life cycle assessment of processes of HTC and activation and their related products in the last paper of this thesis. Briefly mentioned, in my first study (Paper I), I focused on the HTC of glucose in the presence of iron (II) sulfate. By changing the concentration of iron (II) sulfate, with a catalytic amount, blue hydrochars were formed at the bottom of the autoclave. The blueness was related to thin film interference. The thin film hydrochars were more carbonized than spherical hydrochars and the yield of HTC has increased in the presence of iron (II) sulfate. The second study (Paper II) is focused on the activation of hydrochars with H3PO4 and H3PO4+FeCl3. We showed that ultramicroporosity and impregnated iron phosphate species enhance the adsorption of VOCs at low pressure. The ACs were impregnated with Fe (PO3)2 and it was shown that Fe (PO3)2 acts as an activation agent which opens up for future studies. In the third study (Paper III), H3PO4-activated carbons were prepared and modified with FeS and FeSe and it was shown that the ACs were also impregnated with Fe2P, in the case of AC-FeS/Fe2P. FeSe and FeS were not detected by XRD. Only large crystals of Fe2P were detected in the sample AC-FeS/Fe2P. In the last study (Paper IV), prickly pear seed biomass from the agro sector in Tunisia was hydrothermally carbonized. The hydrochars were then activated into ACs by CO2 activation. The life cycle assessment of the HTC and activation process was investigated.  

Place, publisher, year, edition, pages
Department of Materials and Environmental Chemistry, Stockholm University, 2024. p. 51
Keywords
hydrochars, activated carbons, hydrothermal carbonization, chemical activation, gas adsorption
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-228549 (URN)978-91-8014-797-2 (ISBN)978-91-8014-798-9 (ISBN)
Public defence
2024-06-14, online via Zoom, public link is available at the department website, Stockholm, 13:00 (English)
Opponent
Supervisors
Available from: 2024-05-22 Created: 2024-04-22 Last updated: 2024-05-13Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Saadattalab, VahidTai, Cheuk-WaiBacsik, ZoltánHedin, Niklas

Search in DiVA

By author/editor
Saadattalab, VahidTai, Cheuk-WaiBacsik, ZoltánHedin, Niklas
By organisation
Department of Materials and Environmental Chemistry (MMK)Inorganic and Structural ChemistryMaterials Chemistry
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 41 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf