Social complexity affects cognitive abilities but not brain structure in a Poeciliid fishShow others and affiliations
Number of Authors: 62024 (English)In: Behavioral Ecology, ISSN 1045-2249, E-ISSN 1465-7279, Vol. 35, no 3, article id arae026Article in journal (Refereed) Published
Abstract [en]
Some cognitive abilities are suggested to be the result of a complex social life, allowing individuals to achieve higher fitness through advanced strategies. However, most evidence is correlative. Here, we provide an experimental investigation of how group size and composition affect brain and cognitive development in the guppy (Poecilia reticulata). For 6 months, we reared sexually mature females in one of 3 social treatments: a small conspecific group of 3 guppies, a large heterospecific group of 3 guppies and 3 splash tetras (Copella arnoldi)—a species that co-occurs with the guppy in the wild, and a large conspecific group of 6 guppies. We then tested the guppies’ performance in self-control (inhibitory control), operant conditioning (associative learning), and cognitive flexibility (reversal learning) tasks. Using X-ray imaging, we measured their brain size and major brain regions. Larger groups of 6 individuals, both conspecific and heterospecific groups, showed better cognitive flexibility than smaller groups but no difference in self-control and operant conditioning tests. Interestingly, while social manipulation had no significant effect on brain morphology, relatively larger telencephalons were associated with better cognitive flexibility. This suggests alternative mechanisms beyond brain region size enabled greater cognitive flexibility in individuals from larger groups. Although there is no clear evidence for the impact on brain morphology, our research shows that living in larger social groups can enhance cognitive flexibility. This indicates that the social environment plays a role in the cognitive development of guppies.
Place, publisher, year, edition, pages
2024. Vol. 35, no 3, article id arae026
Keywords [en]
associative learning, brain morphology, executive functions, group size, group composition, inhibitory control, reversal learning, X-ray
National Category
Zoology
Identifiers
URN: urn:nbn:se:su:diva-232243DOI: 10.1093/beheco/arae026ISI: 001222845800008PubMedID: 38638166Scopus ID: 2-s2.0-85191014162OAI: oai:DiVA.org:su-232243DiVA, id: diva2:1888164
2024-08-122024-08-122024-08-12Bibliographically approved