Open this publication in new window or tab >>Show others...
2022 (English)In: ACS Synthetic Biology, E-ISSN 2161-5063, Vol. 11, no 1, p. 241-253Article in journal (Refereed) Published
Abstract [en]
Antibiotic resistance cassettes are indispensable tools in recombinant DNA technology, synthetic biology, and metabolic engineering. The genetic cassette encoding the TEM-1 β-lactamase (denoted Tn3.1) is one of the most commonly used and can be found in more than 120 commercially available bacterial expression plasmids (e.g., the pET, pUC, pGEM, pQE, pGEX, pBAD, and pSEVA series). A widely acknowledged problem with the cassette is that it produces excessively high titers of β-lactamase that rapidly degrade β-lactam antibiotics in the culture media, leading to loss of selective pressure, and eventually a large percentage of cells that do not have a plasmid. To address these shortcomings, we have engineered a next-generation version that expresses minimal levels of β-lactamase (denoted Tn3.1MIN). We have also engineered a version that is compatible with the Standard European Vector Architecture (SEVA) (denoted Ap (pSEVA#1MIN--)). Expression plasmids containing either Tn3.1MIN or Ap (pSEVA#1MIN--) can be selected using a 5-fold lower concentration of β-lactam antibiotics and benefit from the increased half-life of the β-lactam antibiotics in the culture medium (3- to 10-fold). Moreover, more cells in the culture retain the plasmid. In summary, we present two antibiotic-efficient genetic cassettes encoding the TEM-1 β-lactamase that reduce antibiotic consumption (an integral part of antibiotic stewardship), reduce production costs, and improve plasmid performance in bacterial cell factories.
Keywords
expression plasmid, genetic cassette, β-lactamase, directed evolution, translation initiation region, antibiotic stewardship
National Category
Microbiology in the medical area
Identifiers
urn:nbn:se:su:diva-201274 (URN)10.1021/acssynbio.1c00393 (DOI)000772066900024 ()34982550 (PubMedID)2-s2.0-85122757383 (Scopus ID)
2022-01-242022-01-242024-08-12Bibliographically approved