1213141516171815 of 25
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Cellulose Iß -Water Interactions: Exploring Moisture-Driven Vibrational Dynamics and Structural Transformations
Stockholm University, Faculty of Science, Department of Chemistry.ORCID iD: 0009-0006-3703-3238
2025 (English)Doctoral thesis, comprehensive summary (Other academic)
Abstract [en]

Nanocellulose is an excellent candidate to replace traditionally fossil-derived materials. Although several cellulose nanomaterials (CNM) have reached the commercial market, the full potential of nanocellulose has yet to be realized. For the continued development of CNM for realistic applications, a deeper understanding on the influence of moisture on the structure and dynamics of these hygroscopic materials is needed. In this thesis, a combination of neutron and X-ray scattering has been deployed to evaluate the moisture-induced structural and dynamical alterations of CNM.

Inelastic neutron scattering (INS) was used to access the full vibrational spectra of nanocellulose with three different crystallinities, revealing that moisture primarily interacts with the disordered regions of the cellulose chains. A combination of INS, small angle neutron scattering, and wide angle X-ray scattering (WAXS) was used to link moisture-induced structural modifications in anisotropic cellulose nanocrystals (CNC) foams to the population change in the phonon density of states; an increasing separation distance between nanoparticles was suggested to suppress the effect of higher crystallinity index and larger coherence length.

The hydration-dependent dynamics and temperature-dependent water diffusion in nanocellulose were investigated using quasielastic neutron scattering. A localized rotational motion of the C6 hydrogens could be detected, and hydration was found to result in an increased cellulose chain mobility. At 270 K, water was found to diffuse independently of cellulose, with the extracted diffusion coefficient matching that of bulk water. At 310 K, the diffusion coefficient was lower than that of bulk water. This could be attributed to water diffusing on the surface of CNC, where the water-cellulose interactions may slow the diffusion.

Anisotropic cellulose nanofibril (CNF) foams obtained from upcycled cotton waste textiles (upCNF) and softwood (wCNF) were subjected to a relative humidity range of 10 and 90% and their structural humidity-response evaluated using in-situ small angle X-ray scattering (SAXS), WAXS, and X-ray microtomography. Across the investigated length scales, the upCNF foams exhibited a superior integrity compared to the wCNF foams, highlighting the potential of cotton waste textiles as a source of nanocellulose.

Multidirectional neutron dark-field tomography (MD-NDFT) has been demonstrated as a non-destructive and non-invasive method for advanced characterization of hierarchical materials. This was achieved by using the simple hierarchical structure of anisotropic CNC and CNF foams as model systems, where the alignment of nanoparticles in the full foams was revealed by MD-NDFT and cross-validated with SAXS on the nanometer scale. The dactyl club of the mantis shrimp was also measured, highlighting the potential of MD-NDFT for nature’s more complex hierarchical constructs.

Place, publisher, year, edition, pages
Stockholm: Department of Chemistry, Stockholm University , 2025. , p. 54
Keywords [en]
nanocellulose, cellulose-water interactions, neutron scattering, X-ray scattering, phonon transport, vibrational dynamics
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
URN: urn:nbn:se:su:diva-241224ISBN: 978-91-8107-178-8 (print)ISBN: 978-91-8107-179-5 (electronic)OAI: oai:DiVA.org:su-241224DiVA, id: diva2:1947062
Public defence
2025-05-09, Magnélisalen, Kemiska övningslaboratoriet, Svante Arrhenius väg 16B, Stockholm, 14:00 (English)
Opponent
Supervisors
Funder
Swedish Foundation for Strategic Research, GSn15-008Available from: 2025-04-14 Created: 2025-03-24 Last updated: 2025-04-11Bibliographically approved
List of papers
1. Moisture-Dependent Vibrational Dynamics and Phonon Transport in Nanocellulose Materials
Open this publication in new window or tab >>Moisture-Dependent Vibrational Dynamics and Phonon Transport in Nanocellulose Materials
Show others...
2024 (English)In: Advanced Materials, ISSN 0935-9648, E-ISSN 1521-4095Article in journal (Refereed) Epub ahead of print
Abstract [en]

Superinsulating nanofibrillar cellulose foams have the potential to replace fossil-based insulating materials, but the development is hampered by the moisture-dependent heat transport and the lack of direct measurements of phonon transport. Here, inelastic neutron scattering is used together with wide angle X-ray scattering (WAXS) and small angle neutron scattering to relate the moisture-dependent structural modifications to the vibrational dynamics and phonon transport and scattering of cellulose nanofibrils from wood and tunicate, and wood cellulose nanocrystals (W-CNC). The moisture interacted primarily with the disordered regions in nanocellulose, and WAXS showed that the crystallinity and coherence length increased as the moisture content increased. The phonon population derived from directional-dependent phonon density of states (GDOS) increased along the cellulose chains in W-CNC between 5 and 8 wt% D2O, while the phonon population perpendicular to the chains remained relatively unaffected, suggesting that the effect of increased crystallinity and coherence length on phonon transport is compensated by the moisture-induced swelling of the foam walls. Frequency scaling in the low-energy GDOS showed that materials based on hygroscopic and semicrystalline nanocellulose falls in between the predicted behavior for solids and liquids. Phonon-engineering of hygroscopic biopolymer-based insulation materials is promoted by the insights on the moisture-dependent phonon transport.

Keywords
foams, inelastic neutron scattering, moisture, nanocellulose, phonon
National Category
Materials Chemistry
Research subject
Materials Chemistry; Materials Science
Identifiers
urn:nbn:se:su:diva-241227 (URN)10.1002/adma.202415725 (DOI)001379007600001 ()2-s2.0-85212270632 (Scopus ID)
Funder
Swedish Foundation for Strategic Research, GSn15-008Swedish Foundation for Strategic Research, SNP21-0004Knut and Alice Wallenberg Foundation
Available from: 2025-03-24 Created: 2025-03-24 Last updated: 2025-04-02
2. Hydration- and Temperature-Dependent Rotational Dynamics and Water Diffusion in Nanocellulose
Open this publication in new window or tab >>Hydration- and Temperature-Dependent Rotational Dynamics and Water Diffusion in Nanocellulose
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-241181 (URN)
Funder
Swedish Foundation for Strategic Research, GSn15-008Swedish Foundation for Strategic Research, SNP21-004Swedish Research Council Formas, 2021-01952Knut and Alice Wallenberg Foundation
Available from: 2025-03-24 Created: 2025-03-24 Last updated: 2025-03-24
3. Multimodal structural humidity-response of cellulose nanofibril foams derived from wood and upcycled cotton textiles
Open this publication in new window or tab >>Multimodal structural humidity-response of cellulose nanofibril foams derived from wood and upcycled cotton textiles
Show others...
2025 (English)In: Carbohydrate Polymers, ISSN 0144-8617, E-ISSN 1879-1344, Vol. 357, article id 123485Article in journal (Refereed) Published
Abstract [en]

We have produced foams from cellulose nanofibrils from upcycled cotton (upCNF) and wood (wCNF) through unidirectional (UIT) and multidirectional ice-templating (MIT) and investigated the structural humidity response through in-situ WAXS, SAXS, and micro tomography (μCT) between 10 and 95 % relative humidity (RH). The upCNF and wCNF WAXS patterns displayed a shape- and position shift as the RH was increased, with a compression in the (200) direction and an elongation in the (004) direction. The average separation distance extracted from the 1D SAXS patterns revealed no significant change for the upCNF foams regardless of RH and processing route, while a significant increase was observed for the wCNF foams. The μCT measurements of the upCNF foams showed a slight shift in macropore distribution towards larger pores between 50 and 80 % RH which can be attributed to the weakening and partial disintegration of the pore wall as more moisture is introduced. The humidity-induced structural alterations of the upCNF foam were significantly lower compared to the wCNF foams, confirming our claim of upCNF being more moisture resistant than wCNF foams.

Keywords
Nanocellulos, Textile upcycling, X-ray scattering, Tomography foams
National Category
Materials Chemistry
Research subject
Materials Chemistry
Identifiers
urn:nbn:se:su:diva-241174 (URN)10.1016/j.carbpol.2025.123485 (DOI)2-s2.0-105000072302 (Scopus ID)
Funder
Knut and Alice Wallenberg FoundationVinnova, 2018-04969Swedish Foundation for Strategic Research, SNP21-0004Swedish Research Council, 2018-07152Swedish Research Council Formas, 2019-02496
Available from: 2025-03-24 Created: 2025-03-24 Last updated: 2025-04-01Bibliographically approved
4. Neutron Dark-Field Tomography Reveals Nano-architectures in Macroscopic Biomaterials
Open this publication in new window or tab >>Neutron Dark-Field Tomography Reveals Nano-architectures in Macroscopic Biomaterials
Show others...
(English)Manuscript (preprint) (Other academic)
National Category
Nanotechnology
Research subject
Materials Science
Identifiers
urn:nbn:se:su:diva-241179 (URN)
Funder
Swedish Foundation for Strategic Research, SNP21-0004Swedish Foundation for Strategic Research, GSn15-008
Available from: 2025-03-24 Created: 2025-03-24 Last updated: 2025-03-24

Open Access in DiVA

Cellulose Iß -Water Interactions: Exploring Moisture-Driven Vibrational Dynamics and Structural Transformations(5237 kB)35 downloads
File information
File name FULLTEXT01.pdfFile size 5237 kBChecksum SHA-512
67210732823bafe375bcddf72995801303cb2fe7501a700c65f204cc1fab1cc475edffe2e31d03d7da8e093705bbcf3aff92c421d14c1a9a8654da302ee137ba
Type fulltextMimetype application/pdf

Authority records

Åhl, Agnes

Search in DiVA

By author/editor
Åhl, Agnes
By organisation
Department of Chemistry
Materials Chemistry

Search outside of DiVA

GoogleGoogle Scholar
Total: 38 downloads
The number of downloads is the sum of all downloads of full texts. It may include eg previous versions that are now no longer available

isbn
urn-nbn

Altmetric score

isbn
urn-nbn
Total: 144 hits
1213141516171815 of 25
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf