Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
A novel prediction for secondary positrons and electrons in the Galaxy
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0003-3478-888X
Show others and affiliations
Number of Authors: 52024 (English)In: Proceedings of Science: Volume 444, Sissa Medialab Srl , 2024, Vol. 444, article id 051Conference paper, Published paper (Refereed)
Abstract [en]

The Galactic flux of cosmic-ray (CR) positrons in the GeV to TeV energy range is very likely due to different Galactic components. One of these is the inelastic scattering of CR nuclei with the atoms of the interstellar medium. The precise amount of this component determines the eventual contribution from other sources. We present here a new estimation of the secondary CR positron flux by incorporating the latest results for the production cross sections of e± from hadronic scatterings calibrated on collider data. All the reactions for CR nuclei up to silicon scattering on both hydrogen and helium are included. The propagation models are derived consistently by fits on primary and secondary CR nuclei data. Models with a small halo size (L ≤ 2 kpc) are disfavored by the nuclei data although the current uncertainties on the beryllium nuclear cross sections may impact this result. The resulting positron flux shows a strong dependence on the Galactic halo size, increasing up to factor 1.5 moving L from 8 to 2 kpc. Within the most reliable propagation models, the positron flux matches the data for energies below 1 GeV. We verify that secondary positrons contribute less than 70% of the data above a few GeV, corroborating that an excess of positrons is already present at very low energies. At larger energies, our predictions are below the data with, the discrepancy becoming more and more pronounced. Our results are provided together with uncertainties due to propagation and hadronic cross sections. The former uncertainties are below 5% at fixed L, while the latter are about 7% almost independently of the propagation scheme. In addition to the predictions of positrons, we provide new predictions also for the secondary CR electron flux.

Place, publisher, year, edition, pages
Sissa Medialab Srl , 2024. Vol. 444, article id 051
Series
Proceedings of Science, E-ISSN 1824-8039 ; 444
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-241223Scopus ID: 2-s2.0-85212262079OAI: oai:DiVA.org:su-241223DiVA, id: diva2:1947166
Conference
38th International Cosmic Ray Conference, ICRC 2023, Nagoya, Japan, July 26 - August 3, 2023
Available from: 2025-03-25 Created: 2025-03-25 Last updated: 2025-03-25Bibliographically approved

Open Access in DiVA

No full text in DiVA

Scopus

Authority records

Korsmeier, Michael

Search in DiVA

By author/editor
Korsmeier, Michael
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

urn-nbn

Altmetric score

urn-nbn
Total: 33 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf