Open this publication in new window or tab >>Show others...
2024 (English)In: Nature Communications, E-ISSN 2041-1723, Vol. 15, article id 4751Article in journal (Refereed) Published
Abstract [en]
Intracellular potassium (K+) homeostasis is fundamental to cell viability. In addition to channels, K+ levels are maintained by various ion transporters. One major family is the proton-driven K+ efflux transporters, which in gram-negative bacteria is important for detoxification and in plants is critical for efficient photosynthesis and growth. Despite their importance, the structure and molecular basis for K+-selectivity is poorly understood. Here, we report ~3.1 Å resolution cryo-EM structures of the Escherichia coli glutathione (GSH)-gated K+ efflux transporter KefC in complex with AMP, AMP/GSH and an ion-binding variant. KefC forms a homodimer similar to the inward-facing conformation of Na+/H+ antiporter NapA. By structural assignment of a coordinated K+ ion, MD simulations, and SSM-based electrophysiology, we demonstrate how ion-binding in KefC is adapted for binding a dehydrated K+ ion. KefC harbors C-terminal regulator of K+ conductance (RCK) domains, as present in some bacterial K+-ion channels. The domain-swapped helices in the RCK domains bind AMP and GSH and they inhibit transport by directly interacting with the ion-transporter module. Taken together, we propose that KefC is activated by detachment of the RCK domains and that ion selectivity exploits the biophysical properties likewise adapted by K+-ion-channels.
National Category
Structural Biology Biochemistry Molecular Biology
Research subject
Structural Biology; Biochemistry
Identifiers
urn:nbn:se:su:diva-205484 (URN)10.1038/s41467-024-49082-7 (DOI)001239453800024 ()38834573 (PubMedID)2-s2.0-85195250052 (Scopus ID)
Funder
Swedish Research Council, 31003156
2022-08-032022-08-032025-04-23Bibliographically approved