Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Fast and accurate AMS-02 antiproton likelihoods for global dark matter fits
Stockholm University, Faculty of Science, Department of Physics. Stockholm University, Faculty of Science, The Oskar Klein Centre for Cosmo Particle Physics (OKC).ORCID iD: 0000-0003-3478-888X
Show others and affiliations
Number of Authors: 52023 (English)In: Journal of Cosmology and Astroparticle Physics, E-ISSN 1475-7516, no 8, article id 052Article in journal (Refereed) Published
Abstract [en]

The antiproton flux measurements from AMS-02 offer valuable information about the nature of dark matter, but their interpretation is complicated by large uncertainties in the modeling of cosmic ray propagation. In this work we present a novel framework to efficiently marginalise over propagation uncertainties in order to obtain robust AMS-02 likelihoods for arbitrary dark matter models. The three central ingredients of this framework are: the neural emulator , which provides highly flexible predictions of the antiproton flux; the likelihood calculator , which performs the marginalisation, taking into account the effects of solar modulation and correlations in AMS-02 data; and the global fitting framework , which allows for the combination of the resulting likelihood with a wide range of dark matter observables. We illustrate our approach by providing updated constraints on the annihilation cross section of WIMP dark matter into bottom quarks and by performing a state-of-the-art global fit of the scalar singlet dark matter model, including also recent results from direct detection and the LHC.

Place, publisher, year, edition, pages
2023. no 8, article id 052
Keywords [en]
cosmic ray theory, dark matter theory, dark matter simulations
National Category
Astronomy, Astrophysics and Cosmology
Identifiers
URN: urn:nbn:se:su:diva-225068DOI: 10.1088/1475-7516/2023/08/052ISI: 001106788700008Scopus ID: 2-s2.0-85169320212OAI: oai:DiVA.org:su-225068DiVA, id: diva2:1825161
Available from: 2024-01-09 Created: 2024-01-09 Last updated: 2024-01-09Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Korsmeier, Michael

Search in DiVA

By author/editor
Korsmeier, Michael
By organisation
Department of PhysicsThe Oskar Klein Centre for Cosmo Particle Physics (OKC)
In the same journal
Journal of Cosmology and Astroparticle Physics
Astronomy, Astrophysics and Cosmology

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 44 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf