Artificial Intelligence (AI) continuously paves its way into even the most traditional business domains. This particularly applies to data-driven AI, like machine learning (ML). Several data-driven approaches like CRISP-DM and KKD exist that help develop and engineer new ML-enhanced solutions. A new breed of approaches, often called canvas-driven or visual ideation approaches, extend the scope by a perspective on the business value an ML-enhanced solution shall enable. In this paper, we reflect on two recent ML projects. We show that the data-driven and canvas-driven approaches cover only some necessary information for developing and operating ML-enhanced solutions. Consequently, we propose to put ML into an enterprise context for which we sketch a first framework and spark the role enterprise modeling can play.