Change search
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf
Lower bounds on the maximal number of rational points on curves over finite fields
Stockholm University, Faculty of Science, Department of Mathematics.
2023 (English)In: Mathematical proceedings of the Cambridge Philosophical Society (Print), ISSN 0305-0041, E-ISSN 1469-8064, Vol. 176, no 1, p. 213-238Article in journal (Refereed) Published
Abstract [en]

For a given genus g ≥ 1, we give lower bounds for the maximal number of rational pointson a smooth projective absolutely irreducible curve of genus g over Fq. As a consequenceof Katz–Sarnak theory, we first get for any given g > 0, any ε > 0 and all q large enough,the existence of a curve of genus g over Fq with at least 1 + q + (2g − ε)√q rational points.Then using sums of powers of traces of Frobenius of hyperelliptic curves, we get a lowerbound of the form 1 + q + 1.71√q valid for g ≥ 3 and odd q ≥ 11. Finally, explicit constructions of towers of curves improve this result: We show that the bound 1 + q + 4√q − 32 isvalid for all g ≥ 2 and for all q.

Place, publisher, year, edition, pages
2023. Vol. 176, no 1, p. 213-238
National Category
Algebra and Logic Geometry
Identifiers
URN: urn:nbn:se:su:diva-233988DOI: 10.1017/s0305004123000476ISI: 001077578100001Scopus ID: 2-s2.0-85173530870OAI: oai:DiVA.org:su-233988DiVA, id: diva2:1902743
Available from: 2024-10-02 Created: 2024-10-02 Last updated: 2024-10-14Bibliographically approved

Open Access in DiVA

No full text in DiVA

Other links

Publisher's full textScopus

Authority records

Bergström, Jonas

Search in DiVA

By author/editor
Bergström, Jonas
By organisation
Department of Mathematics
In the same journal
Mathematical proceedings of the Cambridge Philosophical Society (Print)
Algebra and LogicGeometry

Search outside of DiVA

GoogleGoogle Scholar

doi
urn-nbn

Altmetric score

doi
urn-nbn
Total: 75 hits
CiteExportLink to record
Permanent link

Direct link
Cite
Citation style
  • apa
  • ieee
  • modern-language-association-8th-edition
  • vancouver
  • Other style
More styles
Language
  • de-DE
  • en-GB
  • en-US
  • fi-FI
  • nn-NO
  • nn-NB
  • sv-SE
  • Other locale
More languages
Output format
  • html
  • text
  • asciidoc
  • rtf